This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A022170 Triangle of Gaussian binomial coefficients [ n,k ] for q = 6. 16
 1, 1, 1, 1, 7, 1, 1, 43, 43, 1, 1, 259, 1591, 259, 1, 1, 1555, 57535, 57535, 1555, 1, 1, 9331, 2072815, 12485095, 2072815, 9331, 1, 1, 55987, 74630671, 2698853335, 2698853335, 74630671, 55987, 1, 1, 335923 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 REFERENCES F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698. LINKS G. C. Greubel, Rows n=0..50 of triangle, flattened R. Mestrovic, Lucas' theorem: its generalizations, extensions and applications (1878--2014), arXiv preprint arXiv:1409.3820 [math.NT], 2014. Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1. FORMULA T(n,k) = T(n-1,k-1) + q^k * T(n-1,k). - Peter A. Lawrence, Jul 13 2017 EXAMPLE 1 ; 1 1; 1 7 1; 1 43 43 1; 1 259 1591 259 1; 1 1555 57535 57535 1555 1; 1 9331 2072815 12485095 2072815 9331 1; 1 55987 74630671 2698853335 2698853335 74630671 55987 1 ; MAPLE A027873 := proc(n)     mul(6^i-1, i=1..n) ; end procc: A022170 := proc(n, m)     A027873(n)/A027873(m)/A027873(n-m) ; end proc: # R. J. Mathar, Jul 19 2017 MATHEMATICA p[n_]:= Product[6^i - 1, {i, 1, n}]; t[n_, k_]:= p[n]/(p[k]*p[n-k]); Table[t[n, k], {n, 0, 15}, {k, 0, n}]//Flatten (* Vincenzo Librandi, Aug 13 2016 *) Table[QBinomial[n, k, 6], {n, 0, 10}, {k, 0, n}]//Flatten (* or *) q:= 6; T[n_, 0]:= 1; T[n_, n_]:= 1; T[n_, k_]:= T[n, k] = If[k < 0 || n < k, 0, T[n-1, k -1] +q^k*T[n-1, k]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten  (* G. C. Greubel, May 27 2018 *) PROG (PARI) {q=6; T(n, k) = if(k==0, 1, if (k==n, 1, if (k<0 || n

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 23 09:20 EDT 2019. Contains 321424 sequences. (Running on oeis4.)