login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A038517 Decimal expansion of Gauss-Kuzmin-Wirsing constant. 4
3, 0, 3, 6, 6, 3, 0, 0, 2, 8, 9, 8, 7, 3, 2, 6, 5, 8, 5, 9, 7, 4, 4, 8, 1, 2, 1, 9, 0, 1, 5, 5, 6, 2, 3, 3, 1, 1, 0, 8, 7, 7, 3, 5, 2, 2, 5, 3, 6, 5, 7, 8, 9, 5, 1, 8, 8, 2, 4, 5, 4, 8, 1, 4, 6, 7, 2, 2, 6, 9, 9, 5, 2, 9, 4, 2, 4, 6, 9, 1, 0, 9, 8, 4, 3, 4, 0, 8, 1, 1, 9, 3, 4, 3, 6, 3, 6, 3, 6, 8, 1, 1, 0, 9, 8 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

REFERENCES

T. Bedford et al., eds., Ergodic Theory, Symbolic Dynamics and Hyperbolic Spaces, Oxford, 1991, esp. p. 204.

H. Daude, P. Flajolet and B. Vallee, An average-case analysis of the Gaussian algorithm for lattice reduction, INRIA, 1996.

S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 151-156.

LINKS

Harry J. Smith, Table of n, a(n) for n=0,...,381

Keith Briggs, A precise computation of the Gauss-Kuzmin-Wirsing constant

H. Daude, P. Flajolet and B. Vallee, An average-case analysis of the Gaussian algorithm for lattice reduction, INRIA, 1996.

S. R. Finch, The Gauss-Kuzmin-Wirsing Constant

Simon Plouffe, The Gauss-Kuzmin-Wirsing constant

Simon Plouffe, The Gauss-Kuzmin-Wirsing constant

Eric Weisstein's World of Mathematics, Kuzmin-Wirsing Constant

EXAMPLE

0.303663002898732658597448121901...

MATHEMATICA

m[j_ , k_] := m[j, k] = ((-1)^j/(j!*(-2)^k))* Sum[Binomial[k, i]*(-2)^i*Pochhammer[i+2, j]* (Zeta[i+j+2]*(2^(i+j+2) - 1) - 2^(i+j+2)), {i, 0, k}] // N[#, 120]&; n = 230; $MaxExtraPrecision = 300; t = Table[m[j, k] , {j, 0, n-1}, {k, 0, n-1}] ; g = (Sort @ Abs @ Eigenvalues[t])[[-2]]; RealDigits[g, 10, 105] // First (* Jean-Fran├žois Alcover, Jun 29 2011, after MathWorld *)

PROG

(PARI) { default(realprecision, 382); lambda=0.\

30366300289873265859744812190155623311087735225365\

78951882454814672269952942469109843408119343636368\

11098272263710616938474614859745801316065265381818\

23787913244613989647642974095044629375949048702977\

28772511058335175922044472408659119650778105589295\

79186714752925653642591844121784234492057255294269\

10040657788006767324303643964013896927671340737822\

86711534915435462112848419717968; x=10*lambda; for (n=0, 381, d=floor(x); x=(x-d)*10; write("b038517.txt", n, " ", d)); } [From Harry J. Smith, May 13 2009]

CROSSREFS

Cf. A007515.

Sequence in context: A247734 A010599 A226568 * A055949 A165012 A198126

Adjacent sequences:  A038514 A038515 A038516 * A038518 A038519 A038520

KEYWORD

nonn,cons

AUTHOR

N. J. A. Sloane.

EXTENSIONS

More terms from Robert G. Wilson v, Aug 03 2002

Extended by Eric W. Weisstein using a computation of Keith Briggs (keith.briggs(AT)bt.com), Jul 08, 2003

Fixed my PARI program, had -n Harry J. Smith, May 19 2009

Corrected errors in sequence using the b-file. - N. J. A. Sloane, Aug 30 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 21 11:17 EST 2014. Contains 249777 sequences.