|
|
A015319
|
|
Gaussian binomial coefficient [ n,5 ] for q = -12.
|
|
4
|
|
|
1, -229691, 57554154133, -14313032243145515, 3561712204486990461397, -886264409554702323499876907, 220531019414004693731359534452181, -54875173091354091477849994502919434795
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
5,2
|
|
REFERENCES
|
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 5..190
Index entries for linear recurrences with constant coefficients, signature (-229691,4796198652,8282638393920,-1193447702974464,-14221861305974784,15407021574586368).
|
|
FORMULA
|
G.f.: -x^5 / ( (x-1)*(1728*x+1)*(20736*x-1)*(12*x+1)*(248832*x+1)*(144*x-1) ). - R. J. Mathar, Aug 04 2016
|
|
MATHEMATICA
|
Table[QBinomial[n, 5, -12], {n, 5, 20}] (* Vincenzo Librandi, Oct 29 2012 *)
|
|
PROG
|
(Sage) [gaussian_binomial(n, 5, -12) for n in range(5, 13)] # Zerinvary Lajos, May 27 2009
|
|
CROSSREFS
|
Sequence in context: A212727 A234670 A324636 * A270515 A179624 A357826
Adjacent sequences: A015316 A015317 A015318 * A015320 A015321 A015322
|
|
KEYWORD
|
sign,easy
|
|
AUTHOR
|
Olivier Gérard, Dec 11 1999
|
|
STATUS
|
approved
|
|
|
|