|
|
A179624
|
|
Collatz trajectory starting at 230631.
|
|
1
|
|
|
230631, 691894, 345947, 1037842, 518921, 1556764, 778382, 389191, 1167574, 583787, 1751362, 875681, 2627044, 1313522, 656761, 1970284, 985142, 492571, 1477714, 738857, 2216572, 1108286, 554143, 1662430, 831215, 2493646, 1246823
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
The total stopping time of 230631 is 442. - Michael De Vlieger, Oct 15 2018
|
|
LINKS
|
Michael De Vlieger, Table of n, a(n) for n = 1..443
Eric Weisstein's World of Mathematics, Collatz Problem
Wikipedia, Collatz conjecture
|
|
MATHEMATICA
|
Off[Set::"setraw"]; f[n_]:=If[EvenQ[n], n=n/2, n=n*3+1]; Do[a=q; lst={a}; Do[a=f[a]; AppendTo[lst, a]; If[a==1, Break[]], {n, 10!}]; If[Length[lst]>400, Print[lst, Length[lst]]], {q, 5*8!, 9!}]
NestList[If[EvenQ[#], #/2, 3#+1]&, 230631, 30] (* Harvey P. Dale, Jun 26 2011 *)
|
|
CROSSREFS
|
Cf. A161021, A179623.
Sequence in context: A324636 A015319 A270515 * A357826 A050998 A237462
Adjacent sequences: A179621 A179622 A179623 * A179625 A179626 A179627
|
|
KEYWORD
|
nonn,fini,full,easy
|
|
AUTHOR
|
Vladimir Joseph Stephan Orlovsky, Jul 20 2010
|
|
STATUS
|
approved
|
|
|
|