login
A015429
Gaussian binomial coefficient [ n,12 ] for q=-6.
3
1, 1865813431, 4177511710786827427, 9051628015237517688012698587, 19718638974813744289323111717093729163, 42917665763197914342331213431251480044434903403
OFFSET
12,2
REFERENCES
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
LINKS
FORMULA
a(n) = Product_{i=1..12} ((-6)^(n-i+1)-1)/((-6)^i-1). - Vincenzo Librandi, Nov 06 2012
MATHEMATICA
Table[QBinomial[n, 12, -6], {n, 12, 20}] (* Vincenzo Librandi, Nov 06 2012 *)
PROG
(Sage) [gaussian_binomial(n, 12, -6) for n in range(12, 18)] # Zerinvary Lajos, May 28 2009
(Magma) r:=12; q:=-6; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Nov 06 2012
CROSSREFS
Sequence in context: A251401 A325900 A251282 * A263562 A204813 A103752
KEYWORD
nonn,easy
STATUS
approved