login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A015432
Gaussian binomial coefficient [ n,12 ] for q=-9.
2
1, 254186582833, 72687171253825493271271, 20500882161928535478431441379312055, 5790937276726544621284284010937628428554805020, 1635504033452004972838895174119166771419593874338342173788, 461915515256190228639422934162753182948200513062452706826160310202324
OFFSET
12,2
REFERENCES
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
LINKS
FORMULA
a(n) = Product_{i=1..12} ((-9)^(n-i+1)-1)/((-9)^i-1) (by definition). - Vincenzo Librandi, Nov 06 2012
MATHEMATICA
Table[QBinomial[n, 12, -9], {n, 12, 20}] (* Vincenzo Librandi, Nov 06 2012 *)
PROG
(Sage) [gaussian_binomial(n, 12, -9) for n in range(12, 17)] # Zerinvary Lajos, May 28 2009
(Magma) r:=12; q:=-9; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Nov 06 2012
CROSSREFS
Sequence in context: A076254 A213689 A348800 * A034618 A226858 A216904
KEYWORD
nonn,easy
STATUS
approved