OFFSET
10,2
REFERENCES
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 10..150
FORMULA
a(n) = Product_{i=1..10} ((-4)^(n-i+1)-1)/((-4)^i-1) (by definition). - Vincenzo Librandi, Nov 04 2012
G.f.: x^10 / ((x-1) * (4*x+1) * (16*x-1) * (64*x+1) * (256*x-1) * (1024*x+1) * (4096*x-1) * (16384*x+1) * (65536*x-1) * (262144*x+1) * (1048576*x-1)). - Colin Barker, Jan 13 2014
MATHEMATICA
Table[QBinomial[n, 10, -4], {n, 10, 20}] (* Vincenzo Librandi, Nov 04 2012 *)
PROG
(Sage) [gaussian_binomial(n, 10, -4) for n in range(10, 17)] # Zerinvary Lajos, May 25 2009
(Magma) r:=10; q:=-4; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..25]]; // Vincenzo Librandi, Nov 04 2012
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved