login
A015401
Gaussian binomial coefficient [ n,10 ] for q=-12.
13
1, 57154490053, 3563602618051323347605, 220521264778812882986788501660885, 13654753975171772337501943609360145428875733, 845462977543736084817433183822531039414960234418458069
OFFSET
10,2
REFERENCES
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
LINKS
FORMULA
a(n) = Product_{i=1..10} ((-12)^(n-i+1)-1)/((-12)^i-1) (by definition). - Vincenzo Librandi, Nov 05 2012
MATHEMATICA
Table[QBinomial[n, 10, -12], {n, 10, 20}] (* Vincenzo Librandi, Nov 05 2012 *)
PROG
(Sage) [gaussian_binomial(n, 10, -12) for n in range(10, 15)] # Zerinvary Lajos, May 25 2009
(Magma) r:=10; q:=-12; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Nov 04 2012
CROSSREFS
Cf. Gaussian binomial coefficients [n, 10] for q = -2..-13: A015386, A015388, A015390, A015391, A015392, A015393, A015394, A015397, A015398, A015399, A015402.
Sequence in context: A346365 A295042 A320880 * A273930 A273931 A273933
KEYWORD
nonn,easy
STATUS
approved