login
A015388
Gaussian binomial coefficient [ n,10 ] for q=-3.
13
1, 44287, 2941985410, 167517069529030, 10015359787639069513, 588973263031690760850991, 34826053765400471578213696840, 2055503791013087031667210071738520, 121393945396362834176064326157233601646
OFFSET
10,2
REFERENCES
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
LINKS
FORMULA
a(n) = Product_{i=1..10} ((-3)^(n-i+1)-1)/((-3)^i-1) (by definition). - Vincenzo Librandi, Nov 04 2012
MATHEMATICA
Table[QBinomial[n, 10, -3], {n, 10, 20}] (* Vincenzo Librandi, Nov 04 2012 *)
PROG
(Sage) [gaussian_binomial(n, 10, -3) for n in range(10, 18)] # Zerinvary Lajos, May 25 2009
(Magma) r:=10; q:=-3; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..25]]; // Vincenzo Librandi, Nov 04 2012
CROSSREFS
Cf. Gaussian binomial coefficients [n, 10] for q = -2..-13: A015386, A015390, A015391, A015392, A015393, A015394, A015397, A015398, A015399, A015401, A015402.
Sequence in context: A193055 A240099 A245483 * A257714 A204668 A115959
KEYWORD
nonn,easy
STATUS
approved