login
A115959
Numbers n having exactly 5 distinct prime factors, the largest of which is greater than or equal to sqrt(n) (i.e., sqrt(n)-rough numbers with exactly 5 distinct prime factors).
6
44310, 46830, 47670, 48090, 48930, 50190, 50610, 52710, 53970, 55230, 56490, 56910, 58170, 59010, 59430, 61530, 64470, 65310, 65730, 66570, 69510, 70770, 72870, 73290, 74130, 75390, 77070, 78330, 79590, 80430, 81690, 83370, 84210
OFFSET
1,1
LINKS
EXAMPLE
46830 is in the sequence because it has 5 distinct prime factors (2, 3, 5, 7 and 223) and 223 > sqrt(46830).
MAPLE
with(numtheory): a:=proc(n) if nops(factorset(n))=5 and factorset(n)[5]^2>=n then n else fi end: seq(a(n), n=1..93000);
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Feb 02 2006
STATUS
approved