login
A015399
Gaussian binomial coefficient [ n,10 ] for q=-11.
12
1, 23775972551, 621826557818118395106, 16116470915170412804822871108406, 418048302457998082359053173653182700919721, 10843028997901257369999365975865569183708813670389271
OFFSET
10,2
REFERENCES
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
LINKS
FORMULA
a(n) = Product_{i=1..10} ((-11)^(n-i+1)-1)/((-11)^i-1) (by definition). - Vincenzo Librandi, Nov 05 2012
MATHEMATICA
Table[QBinomial[n, 10, -11], {n, 10, 20}] (* Vincenzo Librandi, Nov 05 2012 *)
PROG
(Sage) [gaussian_binomial(n, 10, -11) for n in range(10, 16)] # Zerinvary Lajos, May 25 2009
(Magma) r:=10; q:=-11; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Nov 05 2012
CROSSREFS
Cf. Gaussian binomial coefficients [n, 10] for q = -2..-13: A015386, A015388, A015390, A015391, A015392, A015393, A015394, A015397, A015398, A015401, A015402.
Sequence in context: A368034 A233841 A338374 * A129475 A172612 A293624
KEYWORD
nonn,easy
STATUS
approved