login
A015386
Gaussian binomial coefficient [ n,10 ] for q=-2.
13
1, 683, 932295, 848699215, 926949282623, 920460637644639, 957498220445101855, 972884994173649887135, 1000137219716325891620511, 1022146087305755916943130783, 1047699739488399814866709052575, 1072321450350081081965428740719775
OFFSET
10,2
REFERENCES
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
LINKS
Index entries for linear recurrences with constant coefficients, signature (683,465806,-106203768, -14443712448,903388560384,28908433932288,-473291569496064, -3563607111499776,16004972290244608,24030926136672256,-36028797018963968).
FORMULA
a(n) = Product_{i=1..10} ((-2)^(n-i+1)-1)/((-2)^i-1) (by definition). - Vincenzo Librandi, Nov 04 2012
G.f.: x^10 / ( (x-1)*(512*x+1)*(64*x-1)*(128*x+1)*(1024*x-1)*(2*x+1)*(8*x+1)*(32*x+1)*(16*x-1)*(4*x-1)*(256*x-1) ). - R. J. Mathar, Sep 22 2016
MATHEMATICA
Table[QBinomial[n, 10, -2], {n, 10, 20}] (* Vincenzo Librandi, Nov 04 2012 *)
PROG
(Sage) [gaussian_binomial(n, 10, -2) for n in range(10, 21)] # Zerinvary Lajos, May 25 2009
(Magma) r:=10; q:=-2; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..25]]; // Vincenzo Librandi, Nov 04 2012
CROSSREFS
Cf. Gaussian binomial coefficients [n, 10] for q = -2..-13: A015388, A015390, A015391, A015392, A015393, A015394, A015397, A015398, A015399, A015401, A015402.
Sequence in context: A239272 A076574 A344202 * A245393 A252856 A184089
KEYWORD
nonn,easy
STATUS
approved