login
A245393
Primes of the form m^10 - m^9 + m^8 - m^7 + m^6 - m^5 + m^4 - m^3 + m^2 - m + 1.
4
683, 51828151, 57154490053, 128011456717, 39700406579747, 60867245726761, 135938684703251, 2681921038140191, 825977153711699903, 2411248431216834661, 38518333422551932951, 161352769633614478921, 4679818035765747188623, 10926823630072049689441, 13158906479414390795167
OFFSET
1,1
COMMENTS
All the terms in this sequence are primes, but none are congruent to 9 mod 10.
The value of first few m's corresponding to primes listed in data section are: 2, 6, 12, 13, 23, 24, 26, 35, 62, 69, 91, 105, 147, 160, 163, 183, 185, 193... 469, 491, 492 .....
LINKS
EXAMPLE
m:=2: m^10 - m^9 + m^8 - m^7 + m^6 - m^5 + m^4 - m^3 + m^2 - m + 1 = 683, which is prime, hence appears in the sequence.
m:=6: m^10 - m^9 + m^8 - m^7 + m^6 - m^5 + m^4 - m^3 + m^2 - m + 1 = 51828151, which is prime, hence appears in the sequence.
MATHEMATICA
Select[Table[n^10 - n^9 + n^8 - n^7 + n^6 - n^5 + n^4 - n^3 + n^2 - n + 1, {n, 200}], PrimeQ]
PROG
(PARI)
for(n=1, 10^3, s=sum(i=0, 10, (-n)^i); if(ispseudoprime(s), print1(s, ", "))) \\ Derek Orr, Jul 30 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
K. D. Bajpai, Jul 21 2014
STATUS
approved