login
A015394
Gaussian binomial coefficient [ n,10 ] for q=-8.
13
1, 954437177, 1041086085394771065, 1115678612484825190455949945, 1198243328242032079710778546865654393, 1286564714023293732070008866290952083995937401, 1381443612518576172240265744739493702803061753684478585
OFFSET
10,2
REFERENCES
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
LINKS
FORMULA
a(n) = Product_{i=1..10} ((-8)^(n-i+1)-1)/((-8)^i-1) (by definition). - Vincenzo Librandi, Nov 04 2012
MATHEMATICA
Table[QBinomial[n, 10, -8], {n, 10, 20}] (* Vincenzo Librandi, Nov 04 2012 *)
PROG
(Sage) [gaussian_binomial(n, 10, -8) for n in range(10, 16)] # Zerinvary Lajos, May 25 2009
(Magma) r:=10; q:=-8; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..25]]; // Vincenzo Librandi, Nov 04 2012
CROSSREFS
Cf. Gaussian binomial coefficients [n, 10] for q = -2..-13: A015386, A015388, A015390, A015391, A015392, A015393, A015397, A015398, A015399, A015401, A015402. - Vincenzo Librandi, Nov 04 2012
Sequence in context: A186805 A122532 A172605 * A375644 A114261 A321489
KEYWORD
nonn,easy
STATUS
approved