This site is supported by donations to The OEIS Foundation.

# Index to OEIS: Section Qua

(Redirected from Index to OEIS: Section Q)

# Index to OEIS: Section Qua

[ Aa | Ab | Al | Am | Ap | Ar | Ba | Be | Bi | Bl | Bo | Br | Ca | Ce | Ch | Cl | Coa | Coi | Com | Con | Cor | Cu | Cy | Da | De | Di | Do | Ea | Ed | El | Eu | Fa | Fe | Fi | Fo | Fu | Ga | Ge | Go | Gra | Gre | Ha | He | Ho | Ia | In | J | K | La | Lc | Li | Lo | Lu | M | Mag | Map | Mat | Me | Mo | Mu | N | Na | Ne | Ni | No | Nu | O | Pac | Par | Pas | Pea | Per | Ph | Poi | Pol | Pos | Pow | Pra | Pri | Pro | Ps | Qua | Que | Ra | Rea | Rel | Res | Ro | Ru | Sa | Se | Si | Sk | So | Sp | Sq | St | Su | Sw | Ta | Te | Th | To | Tra | Tri | Tu | U | V | Wa | We | Wi | X | Y | Z | 1 | 2 | 3 | 4 ]

##### q-binomials , sequences related to :

q-binomials: see Gaussian binomial coefficients, and q-numbers, below.
q-factorials: see "factorial numbers, q-factorials"
q-numbers, a.k.a. q-integers [n]_q = (q^n-1)/(q-1):

negative q = -2: A077925, q = -3: A014983, q = -4: A014985, q = -5: A014986, q = -6: A014987, q = -7: A014989, q = -8: A014990, q = -9: A014991, q = -10: A014992, q = -11: A014993, q = -12: A014994, q = -13: A015000.
positive q = 2 : A000225, q = 3 : A003462, q = 4 : A002450, q = 5 : A003463, q = 6 : A003464, q = 7 : A023000, q = 8 : A002452, q = 9 : A002452, q = 10: A002275, q = 11: A016123, q = 12: A016125, q = 13: A091030, q = 14: A135519, q = 15: A135518, q = 16: A131865, q = 17: A091045, q = 18: A218721, q = 19: A218722, q = 20: A218723, q = 21: A218724, q = 22: A218725, q = 23: A218726, q = 24: A218727.
for more, see partial sums of powers
see also: Gaussian or q-binomial coefficients, [n,k]_q for k=1.

Q-graphs: A007169, A007170, A007171
quadrangulations: A001506, A001507, A001508
quadratic character, sequences with prescribed: A001986, A001988, A001990, A001992

##### quadratic fields , sequences related to :
quadratic fields, class number of sqrt(-n): A000924
quadratic fields, decompostion of primes in, see decomposition of primes in quadratic fields
quadratic fields, discriminant of sqrt(-n): A006555, A006557
quadratic fields, Euclidean: A003174* (real), A048981 (real and imaginary), A003246* (discriminants)
quadratic fields, genera of: A003640, A003641, A003642, A003643
quadratic fields, imaginary, by class numbers: 1: A003173; 2: A005847 and A014603; 3: A006203; 4: A046085 and A013658; 5: A046002; 6: A055109 and A046003; 7: A046004; 8: A055110 and A046005; 9: A046006; 10: A055111 and A046007
quadratic fields, imaginary, by class numbers: 11-20: A046008-A046020
quadratic fields, imaginary, by class numbers: PARI program for computing: A005847
quadratic fields, imaginary, by class numbers: see also the entry under: discriminants of imaginary quadratic fields with class number (negated)
quadratic fields, real, by class numbers: 1: A003172; 2: A029702; 3: A029703; 4: A029704; 5: A029705
quadratic fields, real, discriminants: A037449
quadratic fields, see also A001991, A005474, A001985, A002141, A001989, A001987
quadratic fields, simple: A003172* (real), A003173* (imaginary), A061574 (both)
quadratic fields, totally real of degree n: A006554*
quadratic fields, unique factorization domains: A003172* (real), A003173* (imaginary), A061574 (both)

#### quadratic forms , sequences related to :

quadratic forms, binary: A006375, A000003, A006371, A006374. See also the main article Binary Quadratic Forms and OEIS.
quadratic forms, extreme: A033689*
quadratic forms, genera of: A005141
quadratic forms, minimal norm of: see minimal norm
quadratic forms, one class per genus: A139827
quadratic forms, perfect: A004026*
quadratic forms, populations of , sequences related to :
quadratic forms, populations of: (1) A000024 A000049 A000050 A000067 A000072 A000074 A000075 A000076 A000077 A000205 A000286 A054150
quadratic forms, populations of: (2) A054151 A054152 A054153 A054157 A054159 A054161 A054162 A054163 A054164 A054165 A054166 A054167
quadratic forms, populations of: (3) A054169 A054171 A054173 A054175 A054176 A054177 A054178 A054179 A054180 A054182 A054184 A054186
quadratic forms, populations of: (4) A054187 A054188 A054189 A054191 A054193 A054194 A000018 A000021 A000047 A000286 A068785
quadratic forms, populations of: (5) A000690 A000691 A000692 A000693 A000694 A000709
quadratic forms, ternary: A006376, A006377, A071136
quadratic forms, unimodular, see: lattices, unimodular
quadratic forms, universal: 290-theorem etc.: A030050, A030051, A116582, A154363

quadratic nonresidues, consecutive: A002308*
quadratic residues, A046071, A063987, A096008
quadratic residues, consecutive: A002307*
Quadrilaterals:: A002789, A005036, A002579, A002578
quadrinomial coefficients: A001919 A005190 A005718 A005719 A005720 A005721 A005723 A005724 A005725 A005726 A008287*
quadruple factorial numbers: A007662
quandles: A181769*, A176077, A181771, A165200, A179010, A177886, A178432, A181770, A193024, A193067, A225744, A196111, A226172, A226173, A226174
quarter-squares: A002620*
quasi-amicable numbers: A003502*, A003503*, A005276*
quasi-orders: A006870*

#### quasigroups , sequences related to :

quasigroups : A002860*, A057991*, A058171*
quasigroups, asymmetric: A057994*, A057998, A058172, A058173, A058174*, A058176
quasigroups, by idempotent: A058175*, A058176-A058178
quasigroups, commutative: A057992*, A058172, A058177, A089925
quasigroups, self-converse: A057993*, A057996, A058173, A058178
quasigroups, with identity: A000315, A057771*, A057996, A057997*, A057998, A089925