This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A022177 Triangle of Gaussian binomial coefficients [ n,k ] for q = 13. 15
 1, 1, 1, 1, 14, 1, 1, 183, 183, 1, 1, 2380, 31110, 2380, 1, 1, 30941, 5259970, 5259970, 30941, 1, 1, 402234, 888965871, 11561414060, 888965871, 402234, 1, 1, 5229043, 150235634433, 25401315655691, 25401315655691 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 REFERENCES F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698. Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1. LINKS G. C. Greubel, Rows n=0..50 of triangle, flattened FORMULA T(n,k) = T(n-1,k-1) + q^k * T(n-1,k), with q=13. - G. C. Greubel, May 28 2018 MATHEMATICA Table[QBinomial[n, k, 13], {n, 0, 10}, {k, 0, n}]//Flatten (* or *) q:= 13; T[n_, 0]:= 1; T[n_, n_]:= 1; T[n_, k_]:= T[n, k] = If[k < 0 || n < k, 0, T[n-1, k -1] +q^k*T[n-1, k]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten  (* G. C. Greubel, May 28 2018 *) PROG (PARI) {q=13; T(n, k) = if(k==0, 1, if (k==n, 1, if (k<0 || n

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 25 10:08 EDT 2019. Contains 321469 sequences. (Running on oeis4.)