login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A022199 Gaussian binomial coefficients [ n,8 ] for q = 3. 1
1, 9841, 72636421, 494894285941, 3287582741506063, 21658948312410865183, 142299528422960399756323, 934054234760012359481199283, 6129263888495201102915629695046, 40216143252770054194345243936096486, 263862583736385343242102717216527933566 (list; graph; refs; listen; history; text; internal format)
OFFSET

8,2

REFERENCES

F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 8..200

FORMULA

G.f.: x^8/((1-x)*(1-3*x)*(1-9*x)*(1-27*x)*(1-81*x)*(1-243*x)*(1-729*x)*(1-2187*x)*(1-6561*x)). - Vincenzo Librandi, Aug 07 2016

a(n) = Product_{i=1..8} (3^(n-i+1)-1)/(3^i-1), by definition. - Vincenzo Librandi, Aug 07 2016

MATHEMATICA

Table[QBinomial[n, 8, 3], {n, 8, 20}] (* Vincenzo Librandi, Aug 07 2016 *)

PROG

(Sage) [gaussian_binomial(n, 8, 3) for n in xrange(8, 19)] # Zerinvary Lajos, May 25 2009

(MAGMA) r:=8; q:=3; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 07 2016

(PARI) r=8; q=3; for(n=r, 30, print1(prod(j=1, r, (1-q^(n-j+1))/(1-q^j)), ", ")) \\ G. C. Greubel, May 30 2018

CROSSREFS

Sequence in context: A237064 A251977 A196897 * A203809 A257299 A208646

Adjacent sequences:  A022196 A022197 A022198 * A022200 A022201 A022202

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

EXTENSIONS

Offset changed by Vincenzo Librandi, Aug 07 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 19 00:15 EDT 2019. Contains 321306 sequences. (Running on oeis4.)