login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A014983 a(n) = (1 - (-3)^n)/4. 24
0, 1, -2, 7, -20, 61, -182, 547, -1640, 4921, -14762, 44287, -132860, 398581, -1195742, 3587227, -10761680, 32285041, -96855122, 290565367, -871696100, 2615088301, -7845264902, 23535794707, -70607384120, 211822152361, -635466457082, 1906399371247 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

q-integers for q=-3.

Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=-3, A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n)=(-1)^n*charpoly(A,0). - Milan Janjic, Jan 27 2010

Pisano period lengths:  1, 2, 1, 4, 4, 2, 3, 8, 1, 4, 10, 4, 6, 6, 4, 16, 16, 2, 9, 4, ... - R. J. Mathar, Aug 10 2012

LINKS

T. D. Noe, Table of n, a(n) for n = 0..200

INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 927

R. A. Sulanke, Moments of generalized Motzkin paths, J. Integer Sequences, Vol. 3 (2000), #00.1.

Index entries for linear recurrences with constant coefficients, signature (-2,3)

FORMULA

a(n) = a(n-1) + (-3)^(n-1).

G.f.: x/((1-x)*(1+3*x)).

a(n) = -(-1)^n*A015518(n).

a(n) = the (1, 2)-th element of M^n, where M = ((1, 1, 1, -2), (1, 1, -2, 1), (1, -2, 1, 1), (-2, 1, 1, 1)). - Simone Severini, Nov 25 2004

a(0)=0, a(1)=1, a(n) = -2*a(n-1) + 3*a(n-2) for n>1. - Philippe Deléham, Sep 19 2009

From Sergei N. Gladkovskii, Apr 29 2012: (Start)

G.f. A(x)=G(0)/4; G(k)=  1 - 1/(3^(2*k) - 3*x*3^(4*k)/(3*x*3^(2*k) + 1/(1 + 1/(3*3^(2*k) - 3^(3)*x*3^(4*k)/(3^2*x*3^(2*k) - 1/G(k+1)))))); (continued fraction, 3rd kind, 6-step).

E.g.f. E(x)=G(0)/4; G(k)= 1 - 1/(9^k - 3*x*81^k/(3*x*9^k + (2*k+1)/(1 + 1/(3*9^k - 27*x*81^k/(9*x*9^k - (2*k+2)/G(k+1)))))); (continued fraction, 3rd kind, 6-step). (End)

a(n) = A084222(n) - 1. - Filip Zaludek, Nov 19 2016

E.g.f.: sinh(x)*cosh(x)*exp(-x). - Ilya Gutkovskiy, Nov 20 2016

MAPLE

a:=n->sum ((-3)^j, j=0..n): seq(a(n), n=-1..25); # Zerinvary Lajos, Dec 16 2008

MATHEMATICA

nn = 25; CoefficientList[Series[x/((1 - x)*(1 + 3*x)), {x, 0, nn}], x] (* T. D. Noe, Jun 21 2012 *)

Table[(1 - (-3)^n)/4, {n, 0, 27}] (* Michael De Vlieger, Nov 23 2016 *)

PROG

(PARI) a(n)=(1-(-3)^n)/4

(Sage) [gaussian_binomial(n, 1, -3) for n in xrange(0, 27)] # Zerinvary Lajos, May 28 2009

CROSSREFS

Cf. A077925, A014985, A014986, A014987, A014989, A014990, A014991, A014992, A014993, A014994. - Zerinvary Lajos, Dec 16 2008

Sequence in context: A111017 A116408 A015518 * A083379 A216246 A000935

Adjacent sequences:  A014980 A014981 A014982 * A014984 A014985 A014986

KEYWORD

sign,easy

AUTHOR

Olivier Gérard

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 23 13:09 EST 2017. Contains 295127 sequences.