This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A014983 a(n) = (1 - (-3)^n)/4. 24
 0, 1, -2, 7, -20, 61, -182, 547, -1640, 4921, -14762, 44287, -132860, 398581, -1195742, 3587227, -10761680, 32285041, -96855122, 290565367, -871696100, 2615088301, -7845264902, 23535794707, -70607384120, 211822152361, -635466457082, 1906399371247 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS q-integers for q=-3. Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=-3, A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n)=(-1)^n*charpoly(A,0). - Milan Janjic, Jan 27 2010 Pisano period lengths:  1, 2, 1, 4, 4, 2, 3, 8, 1, 4, 10, 4, 6, 6, 4, 16, 16, 2, 9, 4, ... - R. J. Mathar, Aug 10 2012 LINKS T. D. Noe, Table of n, a(n) for n = 0..200 INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 927 R. A. Sulanke, Moments of generalized Motzkin paths, J. Integer Sequences, Vol. 3 (2000), #00.1. Index entries for linear recurrences with constant coefficients, signature (-2,3) FORMULA a(n) = a(n-1) + (-3)^(n-1). G.f.: x/((1-x)*(1+3*x)). a(n) = -(-1)^n*A015518(n). a(n) = the (1, 2)-th element of M^n, where M = ((1, 1, 1, -2), (1, 1, -2, 1), (1, -2, 1, 1), (-2, 1, 1, 1)). - Simone Severini, Nov 25 2004 a(0)=0, a(1)=1, a(n) = -2*a(n-1) + 3*a(n-2) for n>1. - Philippe Deléham, Sep 19 2009 From Sergei N. Gladkovskii, Apr 29 2012: (Start) G.f. A(x)=G(0)/4; G(k)=  1 - 1/(3^(2*k) - 3*x*3^(4*k)/(3*x*3^(2*k) + 1/(1 + 1/(3*3^(2*k) - 3^(3)*x*3^(4*k)/(3^2*x*3^(2*k) - 1/G(k+1)))))); (continued fraction, 3rd kind, 6-step). E.g.f. E(x)=G(0)/4; G(k)= 1 - 1/(9^k - 3*x*81^k/(3*x*9^k + (2*k+1)/(1 + 1/(3*9^k - 27*x*81^k/(9*x*9^k - (2*k+2)/G(k+1)))))); (continued fraction, 3rd kind, 6-step). (End) a(n) = A084222(n) - 1. - Filip Zaludek, Nov 19 2016 E.g.f.: sinh(x)*cosh(x)*exp(-x). - Ilya Gutkovskiy, Nov 20 2016 MAPLE a:=n->sum ((-3)^j, j=0..n): seq(a(n), n=-1..25); # Zerinvary Lajos, Dec 16 2008 MATHEMATICA nn = 25; CoefficientList[Series[x/((1 - x)*(1 + 3*x)), {x, 0, nn}], x] (* T. D. Noe, Jun 21 2012 *) Table[(1 - (-3)^n)/4, {n, 0, 27}] (* Michael De Vlieger, Nov 23 2016 *) PROG (PARI) a(n)=(1-(-3)^n)/4 (Sage) [gaussian_binomial(n, 1, -3) for n in xrange(0, 27)] # Zerinvary Lajos, May 28 2009 CROSSREFS Cf. A077925, A014985, A014986, A014987, A014989, A014990, A014991, A014992, A014993, A014994. - Zerinvary Lajos, Dec 16 2008 Sequence in context: A111017 A116408 A015518 * A083379 A216246 A000935 Adjacent sequences:  A014980 A014981 A014982 * A014984 A014985 A014986 KEYWORD sign,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.