login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A014983 a(n) = (1 - (-3)^n)/4. 24
0, 1, -2, 7, -20, 61, -182, 547, -1640, 4921, -14762, 44287, -132860, 398581, -1195742, 3587227, -10761680, 32285041, -96855122, 290565367, -871696100, 2615088301, -7845264902, 23535794707, -70607384120, 211822152361, -635466457082, 1906399371247 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

q-integers for q=-3.

Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=-3, A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n)=(-1)^n*charpoly(A,0). - Milan Janjic, Jan 27 2010

Pisano period lengths:  1, 2, 1, 4, 4, 2, 3, 8, 1, 4, 10, 4, 6, 6, 4, 16, 16, 2, 9, 4, ... - R. J. Mathar, Aug 10 2012

LINKS

T. D. Noe, Table of n, a(n) for n = 0..200

INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 927

R. A. Sulanke, Moments of generalized Motzkin paths, J. Integer Sequences, Vol. 3 (2000), #00.1.

Index entries for linear recurrences with constant coefficients, signature (-2,3)

FORMULA

a(n) = a(n-1) + (-3)^(n-1).

G.f.: x/((1-x)*(1+3*x)).

a(n) = -(-1)^n*A015518(n).

a(n) = the (1, 2)-th element of M^n, where M = ((1, 1, 1, -2), (1, 1, -2, 1), (1, -2, 1, 1), (-2, 1, 1, 1)). - Simone Severini, Nov 25 2004

a(0)=0, a(1)=1, a(n) = -2*a(n-1) + 3*a(n-2) for n>1. - Philippe Deléham, Sep 19 2009

From Sergei N. Gladkovskii, Apr 29 2012: (Start)

G.f. A(x)=G(0)/4; G(k)=  1 - 1/(3^(2*k) - 3*x*3^(4*k)/(3*x*3^(2*k) + 1/(1 + 1/(3*3^(2*k) - 3^(3)*x*3^(4*k)/(3^2*x*3^(2*k) - 1/G(k+1)))))); (continued fraction, 3rd kind, 6-step).

E.g.f. E(x)=G(0)/4; G(k)= 1 - 1/(9^k - 3*x*81^k/(3*x*9^k + (2*k+1)/(1 + 1/(3*9^k - 27*x*81^k/(9*x*9^k - (2*k+2)/G(k+1)))))); (continued fraction, 3rd kind, 6-step). (End)

a(n) = A084222(n) - 1. - Filip Zaludek, Nov 19 2016

E.g.f.: sinh(x)*cosh(x)*exp(-x). - Ilya Gutkovskiy, Nov 20 2016

MAPLE

a:=n->sum ((-3)^j, j=0..n): seq(a(n), n=-1..25); # Zerinvary Lajos, Dec 16 2008

MATHEMATICA

nn = 25; CoefficientList[Series[x/((1 - x)*(1 + 3*x)), {x, 0, nn}], x] (* T. D. Noe, Jun 21 2012 *)

Table[(1 - (-3)^n)/4, {n, 0, 27}] (* Michael De Vlieger, Nov 23 2016 *)

PROG

(PARI) a(n)=(1-(-3)^n)/4

(Sage) [gaussian_binomial(n, 1, -3) for n in xrange(0, 27)] # Zerinvary Lajos, May 28 2009

CROSSREFS

Cf. A077925, A014985, A014986, A014987, A014989, A014990, A014991, A014992, A014993, A014994. - Zerinvary Lajos, Dec 16 2008

Sequence in context: A111017 A116408 A015518 * A083379 A216246 A000935

Adjacent sequences:  A014980 A014981 A014982 * A014984 A014985 A014986

KEYWORD

sign,easy

AUTHOR

Olivier Gérard

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified March 28 22:27 EDT 2017. Contains 284249 sequences.