This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A084222 a(n) = -2*a(n-1) + 3*a(n-2), with a(0)=1, a(1)=2. 8
 1, 2, -1, 8, -19, 62, -181, 548, -1639, 4922, -14761, 44288, -132859, 398582, -1195741, 3587228, -10761679, 32285042, -96855121, 290565368, -871696099, 2615088302, -7845264901, 23535794708, -70607384119, 211822152362, -635466457081, 1906399371248 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 Alexandru Ciolan, Pieter Moree, Browkin's discriminator conjecture, arXiv:1707.02183 [math.NT], 2017. Pieter Moree, Ana Zumalacárregui, Salajan's conjecture on discriminating terms in an exponential sequence, Journal of Number Theory 160 (2016), pp. 646-665. Index entries for linear recurrences with constant coefficients, signature (-2,3) FORMULA Binomial transform is A084221. a(n) = (5-(-3)^n)/4. G.f.: (1+4*x)/((1-x)*(1+3*x)). E.g.f.: (5*exp(x)-exp(-3*x))/4. For n > 1, abs(a(n) - a(n+1)) = 3^n. - Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), Jul 15 2003; corrected by Philippe Deléham, Dec 16 2007 a(n) = 9*a(n-2) - 10 with a(0) = 1 and a(1) = 2. - Philippe Deléham, Feb 24 2014 a(2n) = -A211866(n), n>0. - Philippe Deléham, Feb 24 2014 MATHEMATICA CoefficientList[Series[(1 + 4 x)/((1 - x) (1 + 3 x)), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 26 2014 *) LinearRecurrence[{-2, 3}, {1, 2}, 28] (* Jean-François Alcover, Sep 27 2017 *) PROG (PARI) a(n) = (5-(-3)^n)/4; \\ Joerg Arndt, Jul 14 2013 (MAGMA) [(5-(-3)^n)/4: n in [0..40]]; // Vincenzo Librandi, Feb 26 2014 CROSSREFS Cf. A211866. Sequence in context: A012966 A168244 A009828 * A160602 A160626 A052312 Adjacent sequences:  A084219 A084220 A084221 * A084223 A084224 A084225 KEYWORD easy,sign AUTHOR Paul Barry, May 21 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 20 07:24 EDT 2018. Contains 300960 sequences. (Running on oeis4.)