login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A084222 a(n) = -2*a(n-1) + 3*a(n-2), with a(0)=1, a(1)=2. 7
1, 2, -1, 8, -19, 62, -181, 548, -1639, 4922, -14761, 44288, -132859, 398582, -1195741, 3587228, -10761679, 32285042, -96855121, 290565368, -871696099, 2615088302, -7845264901, 23535794708, -70607384119, 211822152362, -635466457081, 1906399371248 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

Pieter Moree, Ana Zumalacárregui, Salajan's conjecture on discriminating terms in an exponential sequence, Journal of Number Theory 160 (2016), pp. 646-665.

Index entries for linear recurrences with constant coefficients, signature (-2,3)

FORMULA

Binomial transform is A084221.

a(n) = (5-(-3)^n)/4.

G.f.: (1+4*x)/((1-x)*(1+3*x)).

E.g.f.: (5*exp(x)-exp(-3*x))/4.

For n > 1, abs(a(n) - a(n+1)) = 3^n. - Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), Jul 15 2003; corrected by Philippe Deléham, Dec 16 2007

a(n) = 9*a(n-2) - 10 with a(0) = 1 and a(1) = 2. - Philippe Deléham, Feb 24 2014

a(2n) = -A211866(n), n>0. - Philippe Deléham, Feb 24 2014

MATHEMATICA

CoefficientList[Series[(1 + 4 x)/((1 - x) (1 + 3 x)), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 26 2014 *)

PROG

(PARI) a(n) = (5-(-3)^n)/4; \\ Joerg Arndt, Jul 14 2013

(MAGMA) [(5-(-3)^n)/4: n in [0..40]]; // Vincenzo Librandi, Feb 26 2014

CROSSREFS

Cf. A211866.

Sequence in context: A012966 A168244 A009828 * A160602 A160626 A052312

Adjacent sequences:  A084219 A084220 A084221 * A084223 A084224 A084225

KEYWORD

easy,sign

AUTHOR

Paul Barry, May 21 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 4 02:25 EST 2016. Contains 278745 sequences.