OFFSET
0,2
COMMENTS
Sequences with similar recurrence rules: A016116 (multiplier 2), A038754 (multiplier 3), A133632 (multiplier 5). See A133632 for general formulas. - Hieronymus Fischer, Sep 19 2007
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Hester Graves, The Minimal Euclidean Function on the Gaussian Integers, arXiv:1802.08281 [math.NT], 2018. See Definition 2.3 p.3.
Index entries for linear recurrences with constant coefficients, signature (0,4)
FORMULA
a(n) = (5*2^n-(-2)^n)/4.
G.f.: (1+3*x)/((1-2*x)(1+2*x)).
E.g.f.: (5*exp(2*x) - exp(-2*x))/4.
a(n+1)-2a(n) = A000079 signed. a(n)+a(n+2)=5*a(n). First differences give A135520. - Paul Curtz, Apr 22 2008
a(n+3) = a(n+2)*a(n+1)/a(n). - Reinhard Zumkeller, Mar 04 2011
a(n) = Sum_{k=0..n+1} A181650(n+1,k)*2^k. - Philippe Deléham, Nov 19 2011
EXAMPLE
Binary...............Decimal
1..........................1
11.........................3
100........................4
1100......................12
10000.....................16
110000....................48
1000000...................64
11000000.................192
100000000................256
1100000000...............768
10000000000.............1024
110000000000............3072, etc. - Philippe Deléham, Mar 21 2014
MATHEMATICA
CoefficientList[Series[(-3*x - 1)/(4*x^2 - 1), {x, 0, 200}], x] (* Vladimir Joseph Stephan Orlovsky, Jun 10 2011 *)
PROG
(Magma) [(5*2^n-(-2)^n)/4: n in [0..40]]; // Vincenzo Librandi, Aug 13 2011
(PARI) a(n)=([0, 1; 4, 0]^n*[1; 3])[1, 1] \\ Charles R Greathouse IV, Oct 03 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Barry, May 21 2003
EXTENSIONS
Edited by N. J. A. Sloane, Dec 14 2007
STATUS
approved