This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A084221 a(n+2) = 4*a(n), with a(0)=1, a(1)=3. 16
 1, 3, 4, 12, 16, 48, 64, 192, 256, 768, 1024, 3072, 4096, 12288, 16384, 49152, 65536, 196608, 262144, 786432, 1048576, 3145728, 4194304, 12582912, 16777216, 50331648, 67108864, 201326592, 268435456, 805306368, 1073741824, 3221225472, 4294967296, 12884901888 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Binomial transform is A060925. Binomial transform of A084222. Sequences with similar recurrence rules: A016116 (multiplier 2), A038754 (multiplier 3), A133632 (multiplier 5). See A133632 for general formulas. - Hieronymus Fischer, Sep 19 2007 Equals A133080 * A000079. A122756 is a companion sequence. - Gary W. Adamson, Sep 19 2007 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (0,4) FORMULA a(n) = (5*2^n-(-2)^n)/4. G.f.: (1+3*x)/((1-2*x)(1+2*x)). E.g.f.: (5*exp(2*x)-exp(-2*x))/4. a(n) = A133628(n)-A133628(n-1) for n>1. - Hieronymus Fischer, Sep 19 2007 Equals A133080 * [1, 2, 4, 8,...]. Row sums of triangle A133087. - Gary W. Adamson, Sep 08 2007 a(n+1)-2a(n) = A000079 signed. a(n)+a(n+2)=5*a(n). First differences give A135520. - Paul Curtz, Apr 22 2008 a(n) = A074323(n+1)*A016116(n). - R. J. Mathar, Jul 08 2009 a(n+3) = a(n+2)*a(n+1)/a(n). - Reinhard Zumkeller, Mar 04 2011 a(n) = Sum_{k, 0<=k<=n+1} A181650(n+1,k)*2^k. - Philippe Deléham, Nov 19 2011 a(2*n) = A000302(n); a(2*n+1) = A164346(n). - Philippe Deléham, Mar 21 2014 EXAMPLE Binary...............Decimal 1..........................1 11.........................3 100........................4 1100......................12 10000.....................16 110000....................48 1000000...................64 11000000.................192 100000000................256 1100000000...............768 10000000000.............1024 110000000000............3072,etc. - Philippe Deléham, Mar 21 2014 MATHEMATICA CoefficientList[Series[(-3*x - 1)/(4*x^2 - 1), {x, 0, 200}], x] (* Vladimir Joseph Stephan Orlovsky, Jun 10 2011 *) PROG (MAGMA) [(5*2^n-(-2)^n)/4: n in [0..40]]; // Vincenzo Librandi, Aug 13 2011 (PARI) a(n)=([0, 1; 4, 0]^n*[1; 3])[1, 1] \\ Charles R Greathouse IV, Oct 03 2016 CROSSREFS For partial sums see A133628. Partial sums for other multipliers p: A027383(p=2), A087503(p=3), A133629(p=5). Other related sequences: A132666, A132667, A132668, A132669. Cf. A000302, A133080, A133087, A164346. Sequence in context: A122757 A280650 A282458 * A142866 A274224 A280525 Adjacent sequences:  A084218 A084219 A084220 * A084222 A084223 A084224 KEYWORD nonn,easy AUTHOR Paul Barry, May 21 2003 EXTENSIONS Edited by N. J. A. Sloane, Dec 14 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.