|
|
A014993
|
|
a(n) = (1 - (-11)^n)/12.
|
|
8
|
|
|
1, -10, 111, -1220, 13421, -147630, 1623931, -17863240, 196495641, -2161452050, 23775972551, -261535698060, 2876892678661, -31645819465270, 348104014117971, -3829144155297680, 42120585708274481
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
q-integers for q = -11.
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 1..900
Index entries for linear recurrences with constant coefficients, signature (-10,11).
|
|
FORMULA
|
a(n) = a(n-1) + q^{(n-1)} = {(q^n - 1) / (q - 1)}.
G.f.: x/((1 - x)*(1 + 11*x)). - Vincenzo Librandi, Oct 22 2012
a(n) = -10*a(n-1) + 11*a(n-2). - Vincenzo Librandi, Oct 22 2012
E.g.f.: (exp(x) - exp(-11*x))/12. - G. C. Greubel, May 26 2018
|
|
MAPLE
|
a:=n->sum ((-11)^j, j=0..n): seq(a(n), n=0..25); # Zerinvary Lajos, Dec 16 2008]
|
|
MATHEMATICA
|
LinearRecurrence[{-10, 11}, {1, -10}, 40] (* Vincenzo Librandi, Oct 22 2012 *)
|
|
PROG
|
(Sage) [gaussian_binomial(n, 1, -11) for n in range(1, 18)] # Zerinvary Lajos, May 28 2009
(MAGMA) I:=[1, -10]; [n le 2 select I[n] else -10*Self(n-1) +11*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Oct 22 2012
(PARI) for(n=1, 30, print1((1-(-11)^n)/12, ", ")) \\ G. C. Greubel, May 26 2018
|
|
CROSSREFS
|
Cf. A077925, A014983, A014985, A014986, A014987, A014989, A014990, A014991, A014992, A014994. - Zerinvary Lajos, Dec 16 2008
Sequence in context: A290626 A087545 A078252 * A015592 A122574 A176736
Adjacent sequences: A014990 A014991 A014992 * A014994 A014995 A014996
|
|
KEYWORD
|
sign,easy
|
|
AUTHOR
|
Olivier Gérard
|
|
EXTENSIONS
|
Better name from Ralf Stephan, Jul 14 2013
|
|
STATUS
|
approved
|
|
|
|