login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A015355 Gaussian binomial coefficient [ n,7 ] for q=-13. 12
1, -58266480, 3677897920745140, -230677643550873536294640, 14475186854407942097510802411322, -908294062111964496034866469968025332240 (list; graph; refs; listen; history; text; internal format)
OFFSET

7,2

REFERENCES

J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.

I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.

M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 7..130

Index entries related to Gaussian binomial coefficients.

FORMULA

a(n) = Product_{i=1..7} ((-13)^(n-i+1)-1)/((-13)^i-1). - M. F. Hasler, Nov 03 2012

MATHEMATICA

Table[QBinomial[n, 7, -13], {n, 7, 16}] (* Vincenzo Librandi, Nov 02 2012 *)

PROG

(Sage) [gaussian_binomial(n, 7, -13) for n in xrange(7, 13)] # Zerinvary Lajos, May 27 2009

(MAGMA) r:=7; q:=-13; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..15]]; // Vincenzo Librandi, Nov 02 2012

(PARI) A015355(n, r=7, q=-13)=prod(i=1, r, (q^(n-i+1)-1)/(q^i-1)) \\ M. F. Hasler, Nov 03 2012

CROSSREFS

Cf. Gaussian binomial coefficients [n,r] for q=-13: A015265 (r=2), A015286 (r=3), A015303 (r=4), A015321 (r=5), A015337 (r=6), A015370 (r=8), A015385 (r=9), A015402 (r=10), A015422 (r=11), A015438 (r=12). - M. F. Hasler, Nov 03 2012

Sequence in context: A258422 A172679 A034612 * A321496 A320211 A320220

Adjacent sequences:  A015352 A015353 A015354 * A015356 A015357 A015358

KEYWORD

sign,easy

AUTHOR

Olivier Gérard

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 26 18:36 EDT 2019. Contains 321511 sequences. (Running on oeis4.)