login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A015341
Gaussian binomial coefficient [ n,7 ] for q = -4.
3
1, -13107, 229062301, -3695215419555, 60779845138496605, -994845394688060798883, 16303527542855381993658461, -267100691734599723202106566563, 4376244513647234644625387176712285
OFFSET
7,2
REFERENCES
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
LINKS
Index entries for linear recurrences with constant coefficients, signature (-13107,57268852,57727002816,-14850554449920,-945799214137344,15372990401216512,57645195621040128,-72057594037927936).
FORMULA
G.f.: x^7 / ( (x-1)*(16384*x+1)*(4096*x-1)*(256*x-1)*(64*x+1)*(4*x+1)*(16*x-1)*(1024*x+1) ). - R. J. Mathar, Sep 02 2016
MATHEMATICA
Table[QBinomial[n, 7, -4], {n, 7, 20}] (* Vincenzo Librandi, Oct 29 2012 *)
PROG
(Sage) [gaussian_binomial(n, 7, -4) for n in range(7, 16)] # Zerinvary Lajos, May 27 2009
CROSSREFS
Sequence in context: A345150 A345151 A252548 * A233689 A250904 A250948
KEYWORD
sign,easy
AUTHOR
Olivier Gérard, Dec 11 1999
STATUS
approved