%I #19 Dec 07 2019 12:18:19
%S 1,-13107,229062301,-3695215419555,60779845138496605,
%T -994845394688060798883,16303527542855381993658461,
%U -267100691734599723202106566563,4376244513647234644625387176712285
%N Gaussian binomial coefficient [ n,7 ] for q = -4.
%D J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
%D I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
%D M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
%H Vincenzo Librandi, <a href="/A015341/b015341.txt">Table of n, a(n) for n = 7..200</a>
%H <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (-13107,57268852,57727002816,-14850554449920,-945799214137344,15372990401216512,57645195621040128,-72057594037927936).
%F G.f.: x^7 / ( (x-1)*(16384*x+1)*(4096*x-1)*(256*x-1)*(64*x+1)*(4*x+1)*(16*x-1)*(1024*x+1) ). - _R. J. Mathar_, Sep 02 2016
%t Table[QBinomial[n, 7, -4], {n, 7, 20}] (* _Vincenzo Librandi_, Oct 29 2012 *)
%o (Sage) [gaussian_binomial(n,7,-4) for n in range(7,16)] # _Zerinvary Lajos_, May 27 2009
%K sign,easy
%O 7,2
%A _Olivier GĂ©rard_, Dec 11 1999