login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A015344 Gaussian binomial coefficient [ n,7 ] for q = -5. 2
1, -65104, 5298179796, -410635172794704, 32132285187903171546, -2509531719872244898534704, 196069714237340352552410777796, -15317750355077977702804539604534704, 1196702310087594273181943625299134137171 (list; graph; refs; listen; history; text; internal format)
OFFSET

7,2

REFERENCES

J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.

I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.

M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 7..200

Index entries for linear recurrences with constant coefficients, signature (-65104,1059648980,3284911838000,-2057018110093750,-256633737343750000,6467584106445312500,31044006347656250000,-37252902984619140625).

FORMULA

G.f.: x^7 / ( (x-1)*(5*x+1)*(25*x-1)*(625*x-1)*(78125*x+1)*(125*x+1)*(15625*x-1)*(3125*x+1) ). - R. J. Mathar, Sep 02 2016

MATHEMATICA

Table[QBinomial[n, 7, -5], {n, 7, 20}] (* Vincenzo Librandi, Nov 02 2012 *)

PROG

(Sage) [gaussian_binomial(n, 7, -5) for n in range(7, 15)] # Zerinvary Lajos, May 27 2009

(MAGMA) r:=7; q:=-5; [&*[(1 - q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..15]]; // Vincenzo Librandi, Nov 02 2012

CROSSREFS

Sequence in context: A183975 A234908 A204640 * A184148 A083608 A102277

Adjacent sequences:  A015341 A015342 A015343 * A015345 A015346 A015347

KEYWORD

sign,easy

AUTHOR

Olivier Gérard, Dec 11 1999

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 11 11:03 EDT 2020. Contains 335626 sequences. (Running on oeis4.)