login
A015413
Gaussian binomial coefficient [ n,11 ] for q=-8.
2
1, -7635497415, 66629509457629850745, -571227449525600988055816521095, 4908004671908135948969747939905903872633, -42158152544207284340561914581652169948472972883335
OFFSET
11,2
REFERENCES
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
LINKS
FORMULA
a(n) = Product_{i=1..11} ((-8)^(n-i+1)-1)/((-8)^i-1) (by definition). - Vincenzo Librandi, Nov 06 2012
MATHEMATICA
Table[QBinomial[n, 11, -8], {n, 11, 20}] (* Vincenzo Librandi, Nov 06 2012 *)
PROG
(Sage) [gaussian_binomial(n, 11, -8) for n in range(11, 17)] # Zerinvary Lajos, May 28 2009
(Magma) r:=11; q:=-8; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Nov 06 2012
CROSSREFS
Sequence in context: A104851 A226950 A225141 * A288090 A306828 A364436
KEYWORD
sign,easy
STATUS
approved