This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A022187 Triangle of Gaussian binomial coefficients [ n,k ] for q = 23. 17
 1, 1, 1, 1, 24, 1, 1, 553, 553, 1, 1, 12720, 293090, 12720, 1, 1, 292561, 155057330, 155057330, 292561, 1, 1, 6728904, 82025620131, 1886737591440, 82025620131, 6728904, 1, 1, 154764793, 43391559778203, 22956018300670611 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 REFERENCES F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698. LINKS G. C. Greubel, rows n=0..50 of triangle, flattened Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1. FORMULA T(n,k) = T(n-1,k-1) + q^k * T(n-1,k), with q=23. - G. C. Greubel, May 30 2018 MATHEMATICA Table[QBinomial[n, k, 23], {n, 0, 10}, {k, 0, n}]//Flatten (* or *) q:= 23; T[n_, 0]:= 1; T[n_, n_]:= 1; T[n_, k_]:= T[n, k] = If[k < 0 || n < k, 0, T[n-1, k -1] +q^k*T[n-1, k]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten  (* G. C. Greubel, May 30 2018 *) PROG (PARI) {q=23; T(n, k) = if(k==0, 1, if (k==n, 1, if (k<0 || n

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 22 18:16 EDT 2019. Contains 328319 sequences. (Running on oeis4.)