login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A023000 a(n) = (7^n - 1)/6. 67
0, 1, 8, 57, 400, 2801, 19608, 137257, 960800, 6725601, 47079208, 329554457, 2306881200, 16148168401, 113037178808, 791260251657, 5538821761600, 38771752331201, 271402266318408, 1899815864228857, 13298711049602000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Apart form a(0), numbers of the form 11...11 (i.e., repunits) in base 7.

7^(floor(7^n/6)) is the highest power of 7 dividing (7^n)!. - Benoit Cloitre, Feb 04 2002

Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=7, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n)=det(A). [Milan Janjic, Feb 21 2010]

Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=8, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)=(-1)^n*charpoly(A,1). [Milan Janjic, Feb 21 2010]

This is the sequence A(0,1;6,7;2) = A(0,1;8,-7;0) of the family of sequences [a,b:c,d:k] considered by G. Detlefs, and treated as A(a,b;c,d;k) in the W. Lang link given below. [Wolfdieter Lang, Oct 18 2010]

From Wolfdieter Lang, May 02 2012 (Start)

6*a(n) =: z(n) gives the approximation up to 7^n for one of the three 7-adic integers (-1)^(1/3), i.e. z(n)^3 + 1 == 0 (mod 7^n), n>=0, and z(n) == 6 (mod 7) == -1 (mod 7), n>=1. The companion sequences are x(n)=A210852(n) and y(n)=A212153(n). This leads to a(n) == 1 (mod 7) for n>=1 (this is also clear from some of the formulas given below). Also 216*a(n)^3 + 1 == 0 (mod 7^n), n>=0, as well as 3*216*a(n)^2 + A212156(n) == 0 (mod 7^n), n>=0. a(n) = 6^(7^(n-1)-1) (mod 7^n), n>=1. A recurrence is a(n) = a(n-1) + 7^(n-1), with a(0)=0, for n>=1.

  Also a(n) = (1/6)*(6*a(n-1))^7 (mod 7^n) with a(1)=1 for n>=1. Finally, 6^3*a(n-1)*a(n)^2 + 1 == 0 (mod 7^(n-1)), n>=1.

(End)

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Roger B. Eggleton, Maximal Midpoint-Free Subsets of Integers, International Journal of Combinatorics Volume 2015, Article ID 216475, 14 pages.

Wolfdieter Lang, Notes on certain inhomogeneous three term recurrences.

Eric Weisstein's World of Mathematics, Repunit

Index entries for linear recurrences with constant coefficients, signature (8,-7).

FORMULA

a(n) = ((4+sqrt(9))^n-(4-sqrt(9))^n)/6. [Al Hakanson (hawkuu(AT)gmail.com), Jan 07 2009]

a(n) = 8*a(n-1)-7*a(n-2). G.f.: x/((1-x)*(1-7*x)). [R. J. Mathar, Jun 21 2009]

From Wolfdieter Lang, Oct 18 2010: (Start)

a(n) = 6*a(n-1) + 7*a(n-2) + 2, a(0)=0, a(1)=1.

a(n) = 7*a(n-1) + a(n-2) - 7*a(n-3) = 9*a(n-1) - 15*a(n-2) + 7*a(n-3), a(0)=0, a(1)=1, a(2)= 8. Observation by G. Detlefs. See the W. Lang comment and link. (End)

a(n) = 7*a(n-1)+1 (with a(0)=0). [Vincenzo Librandi, Nov 19 2010]

a(n) = a(n-1) + 7^(n-1), with a(0)=0, n>=1. - See a Wolfdieter Lang comment above, May 02 2012

MATHEMATICA

LinearRecurrence[{8, -7}, {0, 1}, 30] (* Vincenzo Librandi, Nov 08 2012 *)

PROG

(Sage) a(n)=(7^n-1)/6;

[a(n) for n in xrange(0, 66)] # show terms

# Joerg Arndt, May 28 2012

(PARI) a(n)=(7^n-1)/6;  /* Joerg Arndt, May 28 2012 */

(Maxima) A023000(n):=floor((7^n-1)/6)$  makelist(A023000(n), n, 0, 30); /* Martin Ettl, Nov 05 2012 */

(MAGMA) [n le 2 select n-1 else 8*Self(n-1) - 7*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 08 2012

CROSSREFS

Sequence in context: A283125 A108666 A164031 * A097114 A022038 A277671

Adjacent sequences:  A022997 A022998 A022999 * A023001 A023002 A023003

KEYWORD

easy,nonn

AUTHOR

David W. Wilson

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified July 22 03:22 EDT 2017. Contains 289648 sequences.