login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A015279 Gaussian binomial coefficient [ n,3 ] for q = -11. 2
1, -1220, 1637362, -2177691460, 2898705467483, -3858153003126520, 5135204548028317764, -6834956902420811530200, 9097327679593690752247605, -12108543136400139930131294300, 16116470915170412804822871108406 (list; graph; refs; listen; history; text; internal format)
OFFSET

3,2

REFERENCES

J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.

I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.

M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 3..200

Index entries for linear recurrences with constant coefficients, signature (-1220,148962,1623820,-1771561).

FORMULA

a(n) = product(((-11)^(n-i+1)-1)/((-11)^i-1), i=1..3) (by definition). - Vincenzo Librandi, Aug 02 2016

G.f.: x^3 / ( (x-1)*(11*x+1)*(121*x-1)*(1331*x+1) ). - R. J. Mathar, Aug 03 2016

MATHEMATICA

Table[QBinomial[n, 3, -11], {n, 3, 20}] (* Vincenzo Librandi, Oct 28 2012 *)

PROG

(Sage) [gaussian_binomial(n, 3, -11) for n in xrange(3, 14)] # Zerinvary Lajos, May 27 2009

(MAGMA) r:=3; q:=-11; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 02 2016

CROSSREFS

Sequence in context: A031781 A069400 A233660 * A179140 A091790 A053655

Adjacent sequences:  A015276 A015277 A015278 * A015280 A015281 A015282

KEYWORD

sign,easy

AUTHOR

Olivier Gérard, Dec 11 1999

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 23 02:53 EDT 2019. Contains 321422 sequences. (Running on oeis4.)