

A068466


Decimal expansion of Gamma(1/4).


17



3, 6, 2, 5, 6, 0, 9, 9, 0, 8, 2, 2, 1, 9, 0, 8, 3, 1, 1, 9, 3, 0, 6, 8, 5, 1, 5, 5, 8, 6, 7, 6, 7, 2, 0, 0, 2, 9, 9, 5, 1, 6, 7, 6, 8, 2, 8, 8, 0, 0, 6, 5, 4, 6, 7, 4, 3, 3, 3, 7, 7, 9, 9, 9, 5, 6, 9, 9, 1, 9, 2, 4, 3, 5, 3, 8, 7, 2, 9, 1, 2, 1, 6, 1, 8, 3, 6, 0, 1, 3, 6, 7, 2, 3, 3, 8, 4, 3, 0, 0, 3, 6, 1, 4, 7
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Nesterenko proves that this constant is transcendental (he cites Chudnovsky as the first show this); in fact it is algebraically independent of Pi and e^Pi over Q.  Charles R Greathouse IV, Nov 11 2013


LINKS

Harry J. Smith, Table of n, a(n) for n = 1..1000
G. J. Fee and Simon Plouffe, Gamma(1/4) to 25000 digits.
Yu V. Nesterenko, Modular functions and transcendence questions, Sbornik: Mathematics 187:9 (1996), pp. 13191348. (English translation)
Simon Plouffe, GAMMA(1/4) to 512 digits.
Eric Weisstein's World of Mathematics, Gamma Function.
Wikipedia, Particular values of the Gamma function: General rational arguments.
Index to sequences related to the Gamma function


EXAMPLE

3.6256099082219083119306851558676720029951676828800654674333...


MAPLE

evalf(GAMMA(1/4));


MATHEMATICA

RealDigits[Gamma[1/4], 10, 110][[1]] (* Bruno Berselli, Dec 13 2012 *)


PROG

(PARI) default(realprecision, 1080); x=gamma(1/4); for (n=1, 1000, d=floor(x); x=(xd)*10; write("b068466.txt", n, " ", d)); \\ Harry J. Smith, Apr 19 2009


CROSSREFS

Sequence in context: A169837 A160590 A111952 * A194076 A194040 A194065
Adjacent sequences: A068463 A068464 A068465 * A068467 A068468 A068469


KEYWORD

cons,easy,nonn


AUTHOR

Benoit Cloitre, Mar 10 2002


STATUS

approved



