login
A022248
Gaussian binomial coefficients [ n,8 ] for q = 8.
1
1, 19173961, 326791806956681, 5493386001237942388361, 92186229916592298695053497993, 1546675492323688689677277254864590473, 25949007804224083420097621839124559742097033
OFFSET
8,2
REFERENCES
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
LINKS
FORMULA
a(n) = Product_{i=1..8} (8^(n-i+1)-1)/(8^i-1), by definition. - Vincenzo Librandi, Aug 06 2016
G.f.: x^8/((1 - x)*(1 - 8*x)*(1 - 64*x)*(1 - 512*x)*(1 - 4096*x)*(1 - 32768*x)*(1 - 262144*x)*(1 - 2097152*x)*(1 - 16777216*x)). - Ilya Gutkovskiy, Aug 06 2016
MATHEMATICA
Table[QBinomial[n, 8, 8], {n, 8, 20}] (* Vincenzo Librandi, Aug 06 2016 *)
PROG
(Sage) [gaussian_binomial(n, 8, 8) for n in range(8, 15)] # Zerinvary Lajos, May 25 2009
(Magma) r:=8; q:=8; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 06 2016
CROSSREFS
Sequence in context: A138025 A184790 A183697 * A224627 A038683 A017287
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Offset changed by Vincenzo Librandi, Aug 06 2016
STATUS
approved