login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A015337 Gaussian binomial coefficient [ n,6 ] for q = -13. 12
1, 4482037, 21762709934980, 104996653267533662740, 506816536013640476467362442, 2446300028783605805772822454177234, 11807825441932996339362317150047214843540 (list; graph; refs; listen; history; text; internal format)
OFFSET

6,2

REFERENCES

J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.

I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.

M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 6..100

Index entries related to Gaussian binomial coefficients.

FORMULA

a(n) = Product_{i=1..6} ((-13)^(n-i+1)-1)/((-13)^i-1). - M. F. Hasler, Nov 03 2012

MATHEMATICA

Table[QBinomial[n, 6, -13], {n, 6, 10}] (* Vincenzo Librandi, Oct 29 2012 *)

PROG

(Sage) [gaussian_binomial(n, 6, -13) for n in xrange(6, 13)] # Zerinvary Lajos, May 27 2009

(PARI) A015337(n, r=6, q=-13)=prod(i=1, r, (q^(n-i+1)-1)/(q^i-1)) \\ M. F. Hasler, Nov 03 2012

CROSSREFS

Cf. Gaussian binomial coefficients [n,r] for q=-13: A015265 (r=2), A015286 (r=3), A015303 (r=4), A015321 (r=5), A015355 (r=7), A015370 (r=8), A015385 (r=9), A015402 (r=10), A015422 (r=11), A015438 (r=12). - M. F. Hasler, Nov 03 2012

Sequence in context: A237910 A244575 A105649 * A319064 A183679 A234793

Adjacent sequences:  A015334 A015335 A015336 * A015338 A015339 A015340

KEYWORD

nonn,easy

AUTHOR

Olivier Gérard, Dec 11 1999

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 24 12:13 EDT 2019. Contains 321448 sequences. (Running on oeis4.)