login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
Search: seq:1,0,0,1,0,1,0,1,1,0
Displaying 1-10 of 151 results found. page 1 2 3 4 5 6 7 8 9 10 ... 16
     Sort: relevance | references | number | modified | created      Format: long | short | data
A237048 Irregular triangle read by rows: T(n,k), n >= 1, k >= 1, in which column k lists 1's interleaved with k-1 zeros, and the first element of column k is in row k(k+1)/2. +30
212
1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET
1
COMMENTS
The sum of row n gives A001227(n), the number of odd divisors of n.
Row n has length A003056(n), hence column k starts in row A000217(k).
If n = 2^j then the only positive integer in row n is T(n,1) = 1.
If n is an odd prime then the only two positive integers in row n are T(n,1) = 1 and T(n,2) = 1.
The partial sums of column k give the column k of A235791.
The connection with A196020 is as follows: A235791 --> A236104 --> A196020.
The connection with the symmetric representation of sigma is as follows: A235791 --> A237591 --> A237593 --> A239660 --> A237270.
From Hartmut F. W. Hoft, Oct 23 2014: (Start)
Property: Let n = 2^m*s*t with m >= 0 and 1 <= s, t odd, and r(n) = floor(sqrt(8*n+1) - 1)/2) = A003056(n). T(n, k) = 1 precisely when k is odd and k|n, or k = 2^(m+1)*s when 1 <= s < 2^(m+1)*s <= r(n) < t. Thus each odd divisor greater than r(n) is matched by a unique even index less than or equal to r(n).
For further connections with the symmetric representation of sigma see also A249223. (End)
From Omar E. Pol, Jan 21 2017: (Start)
Conjecture 1: alternating sum of row n gives A067742(n), the number of middle divisors of n.
The sum of row n also gives the number of subparts in the symmetric representation of sigma(n), equaling A001227(n), the number of odd divisors of n. For more information see A279387. (End)
From Omar E. Pol, Feb 08 2017, Feb 22 2017: (Start)
Conjecture 2: Alternating sum of row n also gives the number of central subparts in the symmetric representation of sigma(n), equaling the width of the terrace at the n-th level in the main diagonal of the pyramid described in A245092.
Conjecture 3: The sum of the odd-indexed terms in row n gives A082647(n): the number of odd divisors of n less than sqrt(2*n), also the number of partitions of n into an odd number of consecutive parts.
Conjecture 4: The sum of the even-indexed terms in row n gives A131576(n): the number of odd divisors of n greater than sqrt(2*n), also the number of partitions of n into an even number of consecutive parts.
Conjecture 5: The sum of the even-indexed terms in row n also gives the number of pairs of equidistant subparts in the symmetric representation of sigma(n). (End)
Conjecture 6: T(n,k) is also the number of partitions of n into exactly k consecutive parts. - Omar E. Pol, Apr 28 2017
The number of zeros in the n-th row equals A238005(n). - Omar E. Pol, Sep 11 2021
This triangle is a member of an infinite family of irregular triangles read by rows in which column k lists 1's interleaved with k-1 zeros, and the first element of column k is where the row number equals the k-th (m+2)-gonal number, with n >= 1, k >= 1, m >= 0. T(n,k) is also the number of partitions of n into k consecutive parts that differ by m. This is the case for m = 1. For other values of m see the cross-references. - Omar E. Pol, Sep 29 2021
The indices of the rows where the number of 1's increases to a record give A053624. - Omar E. Pol, Mar 04 2023
LINKS
FORMULA
For n >= 1 and k = 1, ..., A003056(n): if k is odd then T(n, k) = 1 if k|n, otherwise 0, and if k is even then T(n, k) = 1 if k|(n-k/2), otherwise 0. - Hartmut F. W. Hoft, Oct 23 2014
a(n) = A057427(A196020(n)) = A057427(A261699(n)). - Omar E. Pol, Nov 14 2016
A000203(n) = Sum_{k=1..A003056(n)} (-1)^(k-1) * ((Sum_{j=k*(k+1)/2..n} T(j,k))^2 - (Sum_{j=k*(k+1)/2..n} T(j-1,k))^2), assuming that T(k*(k+1)/2-1,k) = 0. - Omar E. Pol, Oct 10 2018
T(n,k) = A285914(n,k)/k. - Omar E. Pol, Sep 29 2021
From Hartmut F. W. Hoft, Apr 30 2024: (Start)
Another way of expressing the formula above, using S(n,k) for entries in the triangle of A235791, is:
T(n,k) = S(n,k) - S(n-1,k), for all n >=1 and 1 <= k <= A003056(n), noting that for triangular numbers n(n+1)/2, S(n(n+1)/2 - 1, A003056(n(n+1)/2) = S(n(n+1)/2 - 1, n) = 0.
Also, T(n,k) = 1 if n - k(k+1)/2 (mod k) = 0, and 0 otherwise. (End)
EXAMPLE
Triangle begins (rows 1..28):
1;
1;
1, 1;
1, 0;
1, 1;
1, 0, 1;
1, 1, 0;
1, 0, 0;
1, 1, 1;
1, 0, 0, 1;
1, 1, 0, 0;
1, 0, 1, 0;
1, 1, 0, 0;
1, 0, 0, 1;
1, 1, 1, 0, 1;
1, 0, 0, 0, 0;
1, 1, 0, 0, 0;
1, 0, 1, 1, 0;
1, 1, 0, 0, 0;
1, 0, 0, 0, 1;
1, 1, 1, 0, 0, 1;
1, 0, 0, 1, 0, 0;
1, 1, 0, 0, 0, 0;
1, 0, 1, 0, 0, 0;
1, 1, 0, 0, 1, 0;
1, 0, 0, 1, 0, 0;
1, 1, 1, 0, 0, 1;
1, 0, 0, 0, 0, 0, 1;
...
For n = 20 the divisors of 20 are 1, 2, 4, 5, 10, 20.
There are two odd divisors: 1 and 5. On the other hand the 20th row of triangle is [1, 0, 0, 0, 1] and the row sum is 2, equaling the number of odd divisors of 20.
From Hartmut F. W. Hoft, Oct 23 2014: (Start)
For n = 18 the divisors are 1, 2, 3, 6, 9, 18.
There are three odd divisors: 1 and 3 are in their respective columns, but 9 is accounted for in column 4 = 2^2*1 since 18 = 2^1*1*9 and 9>5, the number of columns in row 18. (End)
From Omar E. Pol, Dec 17 2016: (Start)
Illustration of initial terms:
Row _
1 _|1|
2 _|1 _|
3 _|1 |1|
4 _|1 _|0|
5 _|1 |1 _|
6 _|1 _|0|1|
7 _|1 |1 |0|
8 _|1 _|0 _|0|
9 _|1 |1 |1 _|
10 _|1 _|0 |0|1|
11 _|1 |1 _|0|0|
12 _|1 _|0 |1 |0|
13 _|1 |1 |0 _|0|
14 _|1 _|0 _|0|1 _|
15 _|1 |1 |1 |0|1|
16 _|1 _|0 |0 |0|0|
17 _|1 |1 _|0 _|0|0|
18 _|1 _|0 |1 |1 |0|
19 _|1 |1 |0 |0 _|0|
20 _|1 _|0 _|0 |0|1 _|
21 _|1 |1 |1 _|0|0|1|
22 _|1 _|0 |0 |1 |0|0|
23 _|1 |1 _|0 |0 |0|0|
24 _|1 _|0 |1 |0 _|0|0|
25 _|1 |1 |0 _|0|1 |0|
26 _|1 _|0 _|0 |1 |0 _|0|
27 _|1 |1 |1 |0 |0|1 _|
28 |1 |0 |0 |0 |0|0|1|
...
Note that the 1's are placed exactly below the horizontal line segments.
Also the above structure represents the left hand part of the front view of the pyramid described in A245092. For more information about the pyramid and the symmetric representation of sigma see A237593. (End)
MAPLE
r := proc(n) floor((sqrt(1+8*n)-1)/2) ; end proc: # A003056
A237048:=proc(n, k) local i; global r;
if n<(k-1)*k/2 or k>r(n) then return(0); fi;
if (k mod 2)=1 and (n mod k)=0 then return(1); fi;
if (k mod 2)=0 and ((n-k/2) mod k) = 0 then return(1); fi;
return(0);
end;
for n from 1 to 12 do lprint([seq(A237048(n, k), k=1..r(n))]); od; # N. J. A. Sloane, Jan 15 2021
MATHEMATICA
cd[n_, k_] := If[Divisible[n, k], 1, 0]
row[n_] := Floor[(Sqrt[8n+1] - 1)/2]
a237048[n_, k_] := If[OddQ[k], cd[n, k], cd[n - k/2, k]]
a237048[n_] := Map[a237048[n, #]&, Range[row[n]]]
Flatten[Map[a237048, Range[24]]] (* data: 24 rows of triangle *)
(* Hartmut F. W. Hoft, Oct 23 2014 *)
PROG
(PARI) t(n, k) = if (k % 2, (n % k) == 0, ((n - k/2) % k) == 0);
tabf(nn) = {for (n=1, nn, for (k=1, floor((sqrt(1+8*n)-1)/2), print1(t(n, k), ", "); ); print(); ); } \\ Michel Marcus, Sep 20 2015
(Python)
from sympy import sqrt
import math
def T(n, k): return (n%k == 0)*1 if k%2 == 1 else (((n - k/2)%k) == 0)*1
for n in range(1, 21): print([T(n, k) for k in range(1, int(math.floor((sqrt(8*n + 1) - 1)/2)) + 1)]) # Indranil Ghosh, Apr 21 2017
CROSSREFS
Indices of 1's are also the indices of nonzero terms in A196020, A211343, A236106, A239662, A261699, A272026, A280850, A285891, A285914, A286013, A339275.
The MMA code here is also used in A262045.
Triangles of the same family related to partitions into consecutive parts that differ by m are: A051731 (m=0), this sequence (m=1), A303300 (m=2), A330887 (m=3), A334460 (m=4), A334465 (m=5).
KEYWORD
nonn,easy,tabf
AUTHOR
Omar E. Pol, Mar 01 2014
STATUS
approved
A030190 Binary Champernowne sequence (or word): write the numbers 0,1,2,3,4,... in base 2 and juxtapose. +30
108
0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET
0,1
COMMENTS
a(A003607(n)) = 0 and for n > 0: a(A030303(n)) = 1. - Reinhard Zumkeller, Dec 11 2011
An irregular table in which the n-th row lists the bits of n (see the example section). - Jason Kimberley, Dec 07 2012
The binary Champernowne constant: it is normal in base 2. - Jason Kimberley, Dec 07 2012
This is the characteristic function of A030303, which gives the indices of 1's in this sequence and has first differences given by A066099. - M. F. Hasler, Oct 12 2020
REFERENCES
Michel Rigo, Formal Languages, Automata and Numeration Systems, 2 vols., Wiley, 2014. Mentions this sequence - see "List of Sequences" in Vol. 2.
LINKS
Jean Berstel, Home Page (in case the following link should be broken)
Jean Berstel and Juhani Karhumäki, Combinatorics on words-a tutorial. Bull. Eur. Assoc. Theor. Comput. Sci. EATCS, # 79, pp. 178-228, 2003.
S. Ferenczi, Complexity of sequences and dynamical systems, Discrete Math., 206 (1999), 145-154.
Eric Weisstein's World of Mathematics, Binary Champernowne Constant
EXAMPLE
As an array, this begins:
0,
1,
1, 0,
1, 1,
1, 0, 0,
1, 0, 1,
1, 1, 0,
1, 1, 1,
1, 0, 0, 0,
1, 0, 0, 1,
1, 0, 1, 0,
1, 0, 1, 1,
1, 1, 0, 0,
1, 1, 0, 1,
1, 1, 1, 0,
1, 1, 1, 1,
1, 0, 0, 0, 0,
1, 0, 0, 0, 1,
...
MATHEMATICA
Flatten[ Table[ IntegerDigits[n, 2], {n, 0, 26}]] (* Robert G. Wilson v, Mar 08 2005 *)
First[RealDigits[ChampernowneNumber[2], 2, 100, 0]] (* Paolo Xausa, Jun 16 2024 *)
PROG
(Haskell)
import Data.List (unfoldr)
a030190 n = a030190_list !! n
a030190_list = concatMap reverse a030308_tabf
-- Reinhard Zumkeller, Jun 16 2012, Dec 11 2011
(Magma) [0]cat &cat[Reverse(IntegerToSequence(n, 2)):n in[1..31]]; // Jason Kimberley, Dec 07 2012
(PARI) A030190_row(n)=if(n, binary(n), [0]) \\ M. F. Hasler, Oct 12 2020
(Python)
from itertools import count, islice
def A030190_gen(): return (int(d) for m in count(0) for d in bin(m)[2:])
A030190_list = list(islice(A030190_gen(), 30)) # Chai Wah Wu, Jan 07 2022
CROSSREFS
Cf. A007376, A003137, A030308. Same as and more fundamental than A030302, but I have left A030302 in the OEIS because there are several sequences that are based on it (A030303 etc.). - N. J. A. Sloane.
a(n) = T(A030530(n), A083652(A030530(n))-n-1), T as defined in A083651, a(A083652(k))=1.
Tables in which the n-th row lists the base b digits of n: this sequence and A030302 (b=2), A003137 and A054635 (b=3), A030373 (b=4), A031219 (b=5), A030548 (b=6), A030998 (b=7), A031035 and A054634 (b=8), A031076 (b=9), A007376 and A033307 (b=10). - Jason Kimberley, Dec 06 2012
A076478 is a similar sequence.
For run lengths see A056062; see also A318924.
See also A066099 for (run lengths of 0s) + 1 = first difference of positions of 1s given by A030303.
KEYWORD
nonn,base,cons,easy,tabf
AUTHOR
STATUS
approved
A000161 Number of partitions of n into 2 squares. +30
63
1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 2, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 2, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 2, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 2, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 2, 1, 0, 0, 1, 0, 1, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,26
COMMENTS
Number of ways of writing n as a sum of 2 (possibly zero) squares when order does not matter.
Number of similar sublattices of square lattice with index n.
Let Pk = the number of partitions of n into k nonzero squares. Then we have A000161 = P0 + P1 + P2, A002635 = P0 + P1 + P2 + P3 + P4, A010052 = P1, A025426 = P2, A025427 = P3, A025428 = P4. - Charles R Greathouse IV, Mar 08 2010, amended by M. F. Hasler, Jan 25 2013
a(A022544(n))=0; a(A001481(n))>0; a(A125022(n))=1; a(A118882(n))>1. - Reinhard Zumkeller, Aug 16 2011
REFERENCES
J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 339
LINKS
B. K. Agarwala and F. C. Auluck, Statistical mechanics and partitions into non-integral powers of integers, Proc. Camb. Phil. Soc., 47 (1951), 207-216. [Annotated scanned copy]
R. T. Bumby, Sums of four squares, in Number theory (New York, 1991-1995), 1-8, Springer, New York, 1996.
J. H. Conway, E. M. Rains and N. J. A. Sloane, On the existence of similar sublattices, Canad. J. Math. 51 (1999), 1300-1306 (Abstract, pdf, ps).
E. Grosswald, Representations of Integers as Sums of Squares, Springer-Verlag, NY, 1985, p. 84.
M. D. Hirschhorn, Some formulas for partitions into squares, Discrete Math, 211 (2000), pp. 225-228. [From Ant King, Oct 05 2010]
FORMULA
a(n) = card { { a,b } c N | a^2+b^2 = n }. - M. F. Hasler, Nov 23 2007
Let f(n)= the number of divisors of n that are congruent to 1 modulo 4 minus the number of its divisors that are congruent to 3 modulo 4, and define delta(n) to be 1 if n is a perfect square and 0 otherwise. Then a(n)=1/2 (f(n)+delta(n)+delta(1/2 n)). - Ant King, Oct 05 2010
EXAMPLE
25 = 3^2+4^2 = 5^2, so a(25) = 2.
MAPLE
A000161 := proc(n) local i, j, ans; ans := 0; for i from 0 to n do for j from i to n do if i^2+j^2=n then ans := ans+1 fi od od; RETURN(ans); end; [ seq(A000161(i), i=0..50) ];
A000161 := n -> nops( numtheory[sum2sqr](n) ); # M. F. Hasler, Nov 23 2007
MATHEMATICA
Length[PowersRepresentations[ #, 2, 2]] &/@Range[0, 150] (* Ant King, Oct 05 2010 *)
PROG
(PARI) a(n)=sum(i=0, n, sum(j=0, i, if(i^2+j^2-n, 0, 1))) \\ for illustrative purpose
(PARI) A000161(n)=sum(k=sqrtint((n-1)\2)+1, sqrtint(n), issquare(n-k^2)) \\ Charles R Greathouse IV, Mar 21 2014, improves earlier code by M. F. Hasler, Nov 23 2007
(PARI) A000161(n)=#sum2sqr(n) \\ See A133388 for sum2sqr(). - M. F. Hasler, May 13 2018
(Haskell)
a000161 n =
sum $ map (a010052 . (n -)) $ takeWhile (<= n `div` 2) a000290_list
a000161_list = map a000161 [0..]
-- Reinhard Zumkeller, Aug 16 2011
(Python)
from math import prod
from sympy import factorint
def A000161(n):
f = factorint(n)
return int(not any(e&1 for e in f.values())) + (((m:=prod(1 if p==2 else (e+1 if p&3==1 else (e+1)&1) for p, e in f.items()))+((((~n & n-1).bit_length()&1)<<1)-1 if m&1 else 0))>>1) if n else 1 # Chai Wah Wu, Sep 08 2022
CROSSREFS
Equivalent sequences for other numbers of squares: A010052 (1), A000164 (3), A002635 (4), A000174 (5).
KEYWORD
nonn,core,easy,nice
AUTHOR
STATUS
approved
A030302 Write n in base 2 and juxtapose; irregular table in which row n lists the binary expansion of n. +30
63
1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
The binary Champernowne constant: it is normal in base 2. - Jason Kimberley, Dec 07 2012
A word that is recurrent, but neither morphic nor uniformly recurrent. - N. J. A. Sloane, Jul 14 2018
See A030303 for the indices of 1's (so this is the characteristic function of A030303), with first differences (i.e., run lengths of 0's, increased by 1, with two consecutive 1's delimiting a run of zero 0's) given by A066099. - M. F. Hasler, Oct 12 2020
REFERENCES
Michel Rigo, Formal Languages, Automata and Numeration Systems, 2 vols., Wiley, 2014. Mentions this sequence - see "List of Sequences" in Vol. 2.
LINKS
Jean-Paul Allouche, Julien Cassaigne, Jeffrey Shallit and Luca Q. Zamboni, A Taxonomy of Morphic Sequences, arXiv preprint arXiv:1711.10807 [cs.FL], Nov 29 2017.
FORMULA
a(n) = (floor(2^(((n + 2^i - 2) mod i) - i + 1) * ceiling((n + 2^i - 1)/i - 1))) mod 2 where i = ceiling( W(log(2)/2 (n - 1))/log(2) + 1 ) and W denotes the principal branch of the Lambert W function. See also Mathematica code. - David W. Cantrell (DWCantrell(AT)sigmaxi.net), Feb 19 2007
MAPLE
A030302 := proc(n) local i, t1, t2; t1:=convert(n, base, 2); t2:=nops(t1); [seq(t1[t2+1-i], i=1..t2)]; end; # N. J. A. Sloane, Apr 08 2021
MATHEMATICA
i[n_] := Ceiling[FullSimplify[ProductLog[Log[2]/2 (n - 1)]/Log[2] + 1]]; a[n_] := Mod[Floor[2^(Mod[n + 2^i[n] - 2, i[n]] - i[n] + 1) Ceiling[(n + 2^i[n] - 1)/i[n] - 1]], 2]; (* David W. Cantrell (DWCantrell(AT)sigmaxi.net), Feb 19 2007 *)
Join @@ Table[ IntegerDigits[i, 2], {i, 1, 40}] (* Olivier Gérard, Mar 28 2011 *)
Flatten@ IntegerDigits[ Range@ 25, 2] (* or *)
almostNatural[n_, b_] := Block[{m = 0, d = n, i = 1, l, p}, While[m <= d, l = m; m = (b - 1) i*b^(i - 1) + l; i++]; i--; p = Mod[d - l, i]; q = Floor[(d - l)/i] + b^(i - 1); If[p != 0, IntegerDigits[q, b][[p]], Mod[q - 1, b]]]; Array[ almostNatural[#, 2] &, 105] (* Robert G. Wilson v, Jun 29 2014 *)
PROG
(Magma) &cat[Reverse(IntegerToSequence(n, 2)): n in [1..31]]; // Jason Kimberley, Mar 02 2012
(Python)
from itertools import count, islice
def A030302_gen(): # generator of terms
return (int(d) for n in count(1) for d in bin(n)[2:])
A030302_list = list(islice(A030302_gen(), 30)) # Chai Wah Wu, Feb 18 2022
CROSSREFS
Essentially the same as A007088 and A030190. Cf. A030303, A007088.
Tables in which the n-th row lists the base b digits of n: A030190 and this sequence (b=2), A003137 and A054635 (b=3), A030373 (b=4), A031219 (b=5), A030548 (b=6), A030998 (b=7), A031035 and A054634 (b=8), A031076 (b=9), A007376 and A033307 (b=10). [Jason Kimberley, Dec 06 2012]
Sequences mentioned in the Allouche et al. "Taxonomy" paper, listed by example number: 1: A003849, 2: A010060, 3: A010056, 4: A020985 and A020987, 5: A191818, 6: A316340 and A273129, 18: A316341, 19: A030302, 20: A063438, 21: A316342, 22: A316343, 23: A003849 minus its first term, 24: A316344, 25: A316345 and A316824, 26: A020985 and A020987, 27: A316825, 28: A159689, 29: A049320, 30: A003849, 31: A316826, 32: A316827, 33: A316828, 34: A316344, 35: A043529, 36: A316829, 37: A010060.
KEYWORD
nonn,base,cons,easy,tabf
AUTHOR
STATUS
approved
A051023 Middle column of rule-30 1-D cellular automaton, from a lone 1 cell. +30
24
1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,1
COMMENTS
A092539(n) gives the value of prefix of length n+1, seen as a binary number. - Reinhard Zumkeller, Jun 08 2013
Also middle column of rule 86 1-D cellular automaton, from a lone 1 cell, as rule 86 is the mirror image of rule 30. - Antti Karttunen, Oct 03 2019
LINKS
Antti Karttunen, Table of n, a(n) for n = 0..100000 (terms 0..10000 from Reinhard Zumkeller)
Pedro Hecht, PQC: R-Propping a Chaotic Cellular Automata, Univ. of Buenos Aires (Argentina, 2021).
Erica Jen, Global properties of cellular automata, Journal of Statistical Physics 43 (1986), pp 219-242.
Eric Weisstein's World of Mathematics, Elementary Cellular Automaton.
Eric Weisstein's World of Mathematics, Rule 30
Eric Weisstein's World of Mathematics, Random Number
Stephen Wolfram, Announcing the Rule 30 Prizes, 2019
FORMULA
a(n) = A070950(n,n). - Reinhard Zumkeller, Jun 06 2013
a(n) = 1 - A226474(n). - Reinhard Zumkeller, Jun 08 2013
From Antti Karttunen, Oct 04 2019: (Start)
a(n) = A000035(floor(A110240(n) / 2^n)).
For n>= 2, a(n) = (A328100(n) OR A328101(n)) XOR A328101(1+n). ["Sideways evaluation"]
(End)
MATHEMATICA
CellularAutomaton[30, {{1}, 0}, 101, {All, {0}}]//Flatten
PROG
(Haskell)
a051023 n = a070950 n n -- Reinhard Zumkeller, Jun 06 2013
(PARI)
A051023(n) = ((A110240(n)>>n)%2);
\\ Or for fast creation of b-files:
A051023write(up_to) = { my(s=1, n=0); for(n=0, up_to, write("b051023.txt", n, " ", ((s>>n)%2)); s = A269160(s)); }; \\ Antti Karttunen, Oct 03 2019
CROSSREFS
Cf. A070950, A269160 (rule 30), A071032, A269161 (rule 86).
Cf. A327974 (adjacent bits xored), A327982 (partial sums), A327983 (run lengths).
Characteristic function of A327984 (gives the positions of ones in this sequence), A327985 (positions of zeros).
Cf. also A328100, A328101, A328102 (neighbor columns).
Cf. A365254 (converted to base 10).
KEYWORD
nonn
AUTHOR
EXTENSIONS
Corrected from 64th term by Daniel B. Cristofani (cristofd(AT)hevanet.com), Jan 07 2004
STATUS
approved
A011751 Expansion of (1 + x^4)/(1 + x + x^3 + x^4 + x^5) mod 2. +30
23
1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,1
LINKS
R. Gold, Characteristic linear sequences and their coset functions, J. SIAM Applied. Math., 14 (1966), 980-985.
Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1), i.e., 31-periodic.
FORMULA
a(n+31) = a(n) for all n. - M. F. Hasler, Feb 17 2018
MAPLE
series((1+x^4)/(1+x+x^3+x^4+x^5), x, 100) mod 2;
[seq(coeff(series((1+x^4)/(1+x+x^3+x^4+x^5), x, 100) mod 2, x, n), n=0..80)]; # Muniru A Asiru, Feb 18 2018
A011751 := n -> coeftayl((1+x^4)/(1+x+x^3+x^4+x^5), x=0, n) mod 2 # M. F. Hasler, Feb 18 2018
MATHEMATICA
Mod[ CoefficientList[ Series[(1 + x^4)/(1 + x + x^3 + x^4 + x^5), {x, 0, 105}], x], 2] (* Robert G. Wilson v, Feb 19 2018 *)
PROG
(PARI) a(n)=bittest(1826728215, n%31) \\ M. F. Hasler, Feb 17 2018
CROSSREFS
Cf. A011655..A011750 for other binary m-sequences.
KEYWORD
nonn,easy
AUTHOR
STATUS
approved
A024316 a(n) = s(1)*s(n) + s(2)*s(n-1) + ... + s(k)*s(n+1-k), where k = floor((n+1)/2), s = A023531. +30
19
0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 2, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 2, 1, 0, 0, 1, 0, 1, 1, 0, 2, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 2, 1, 0, 0, 2, 0, 0, 0, 0, 3, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,28
LINKS
FORMULA
a(n) = Sum_{j=1..floor((n+1)/2)} A023531(j)*A023531(n-j+1). - G. C. Greubel, Jan 17 2022
MATHEMATICA
A023531[n_]:= SquaresR[1, 8n+9]/2;
a[n_]:= a[n]= Sum[A023531[j]*A023531[n-j+1], {j, Floor[(n+1)/2]}];
Table[a[n], {n, 110}] (* G. C. Greubel, Jan 17 2022 *)
PROG
(Haskell)
a024316 n = sum $ take (div (n + 1) 2) $ zipWith (*) zs $ reverse zs
where zs = take n $ tail a023531_list
-- Reinhard Zumkeller, Feb 14 2015
(Magma)
A023531:= func< n | IsIntegral( (Sqrt(8*n+9) - 3)/2 ) select 1 else 0 >;
[ (&+[A023531(j)*A023531(n-j+1): j in [1..Floor((n+1)/2)]]) : n in [1..110]]; // G. C. Greubel, Jan 17 2022
(Sage)
def A023531(n):
if ((sqrt(8*n+9) -3)/2).is_integer(): return 1
else: return 0
[sum( A023531(j)*A023531(n-j+1) for j in (1..floor((n+1)/2)) ) for n in (1..110)] # G. C. Greubel, Jan 17 2022
CROSSREFS
Cf. A023531.
KEYWORD
nonn
AUTHOR
STATUS
approved
A189920 Zeckendorf representation of natural numbers. +30
17
1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET
1
COMMENTS
The row lengths sequence of this array is A072649(n), n >= 1.
Note that the Fibonacci numbers F(0)=0 and F(1)=1 are not used in this unique representation of n >= 1. No neighboring Fibonacci numbers are allowed (no 1,1, subsequence in any row n).
REFERENCES
R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, 2nd ed., 1994, Addison-Wesley, Reading MA, pp. 295-296.
E. Zeckendorf, Représentation des nombres naturels par une somme des nombres de Fibonacci ou de nombres de Lucas, Bull. Soc. Roy. Sci. Liège 41.3-4 (1972) 179-182 (with the proof from 1939).
LINKS
FORMULA
n = Sum_{m=1..rl(n)} a(n,m)*F(rl(n) + 2 - m), n >= 1, with rl(n):=A072649(n)(row length) and F(n):=A000045(n) (Fibonacci numbers).
T(n,k) = A213676(n, A072649(n, k)-1) for k = 1..A072649(k). - Reinhard Zumkeller, Mar 10 2013
EXAMPLE
n=1: 1;
n=2: 1, 0;
n=3: 1, 0, 0;
n=4: 1, 0, 1;
n=5: 1, 0, 0, 0;
n=6: 1, 0, 0, 1;
n=7: 1, 0, 1, 0;
n=8: 1, 0, 0, 0, 0;
n=9: 1, 0, 0, 0, 1;
n=10: 1, 0, 0, 1, 0;
n=11: 1, 0, 1, 0, 0;
n=12: 1, 0, 1, 0, 1;
n=13: 1, 0, 0, 0, 0, 0;
...
1 = F(2),
6 = F(5) + F(2),
11 = F(6) + F(4).
MATHEMATICA
f[n_] := (k = 1; ff = {}; While[(fi = Fibonacci[k]) <= n, AppendTo[ff, fi]; k++]; Drop[ff, 1]); a[n_] := (fn = f[n]; xx = Array[x, Length[fn]]; r = xx /. {ToRules[ Reduce[ And @@ (0 <= # <= 1 & ) /@ xx && fn . xx == n, xx, Integers]]}; Reverse[ First[ Select[ r, FreeQ[ Split[#], {1, 1, ___}] & ]]]); Flatten[ Table[ a[n], {n, 1, 25}]] (* Jean-François Alcover, Sep 29 2011 *)
PROG
(Haskell)
a189920 n k = a189920_row n !! k
a189920_row n = z n $ reverse $ takeWhile (<= n) $ tail a000045_list where
z x (f:fs'@(_:fs)) | f == 1 = if x == 1 then [1] else []
| f == x = 1 : replicate (length fs) 0
| f < x = 1 : 0 : z (x - f) fs
| f > x = 0 : z x fs'
a189920_tabf = map a189920_row [1..]
-- Reinhard Zumkeller, Mar 10 2013
CROSSREFS
KEYWORD
nonn,easy,tabf,base
AUTHOR
Wolfdieter Lang, Jun 12 2011
STATUS
approved
A129405 Expansion of L(3, chi3) in base 2, where L(s, chi3) is the Dirichlet L-function for the non-principal character modulo 3. +30
15
1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET
0,1
COMMENTS
Contributed to OEIS on Apr 15 2007 -- the 300th anniversary of the birth of Leonhard Euler.
REFERENCES
Leonhard Euler, "Introductio in Analysin Infinitorum", First Part, Articles 176 and 292
LINKS
FORMULA
chi3(k) = Kronecker(-3, k); chi3(k) is 0, 1, -1 when k reduced modulo 3 is 0, 1, 2, respectively; chi3 is A049347 shifted.
Series: L(3, chi3) = sum_{k >= 1} chi3(k) k^{-3} = 1 - 1/2^3 + 1/4^3 - 1/5^3 + 1/7^3 - 1/8^3 + 1/10^3 - 1/11^3 + ...
Closed form: L(3, chi3) = 4 Pi^3/(81 sqrt(3)).
EXAMPLE
L(3, chi3) = A129404 = (0.111000100100111101100010011100000101101...)_2
MATHEMATICA
nmax = 1000; First[ RealDigits[4 Pi^3/(81 Sqrt[3]) - (1/2) * 2^(-nmax), 2, nmax] ]
CROSSREFS
KEYWORD
nonn,base,cons,easy
AUTHOR
Stuart Clary, Apr 15 2007
EXTENSIONS
Offset corrected by R. J. Mathar, Feb 05 2009
STATUS
approved
A142724 Irregular triangle read by rows: row n gives coefficients in expansion of Product_{k=1..n} (1 + x^(2*k + 1)) for n >= 0. +30
14
1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 2, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 2, 0, 2, 1, 2, 1, 1, 2, 1, 2, 0, 2, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 2, 1, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,43
COMMENTS
For n >= 1, row n is the Poincaré polynomial for the Lie group A_n.
Row sums are powers of 2.
REFERENCES
Borel, A. and Chevalley, C., The Betti numbers of the exceptional groups, Mem. Amer. Math. Soc. 1955, no. 14, pp 1-9.
Samuel I. Goldberg, Curvature and Homology, Dover, New York, 1998, page 144
LINKS
FORMULA
p(x,n) = Product[(1 + x^(2*k + 1)), {k, 1, n}]; t(n,m)=coefficients(p(x,n)).
EXAMPLE
Triangle begins:
{1} (the empty product)
{1, 0, 0, 1},
{1, 0, 0, 1, 0, 1, 0, 0, 1},
{1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1},
{1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 2, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1},
{1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 2, 0, 2, 1, 2, 1, 1, 2, 1, 2, 0, 2, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1},
...
MAPLE
A:=n->mul(1+x^(2*r+1), r=1..n);
for n from 1 to 12 do lprint(seriestolist(series(A(n), x, 10000))); od:
MATHEMATICA
Clear[p, x, n, m]; p[x_, n_] = Product[(1 + x^(2*k + 1)), {k, 1, n}]; Table[CoefficientList[p[x, n], x], {n, 1, 10}]; Flatten[%]
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
EXTENSIONS
Edited by N. J. A. Sloane, Dec 25 2010
STATUS
approved
page 1 2 3 4 5 6 7 8 9 10 ... 16

Search completed in 0.016 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 11 15:23 EDT 2024. Contains 374234 sequences. (Running on oeis4.)