login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A334466
Square array read by antidiagonals upwards: T(n,k) is the total number of parts in all partitions of n into consecutive parts that differ by k, with n >= 1, k >= 0.
9
1, 3, 1, 4, 1, 1, 7, 3, 1, 1, 6, 1, 1, 1, 1, 12, 3, 3, 1, 1, 1, 8, 4, 1, 1, 1, 1, 1, 15, 3, 3, 3, 1, 1, 1, 1, 13, 1, 1, 1, 1, 1, 1, 1, 1, 18, 6, 3, 3, 3, 1, 1, 1, 1, 1, 12, 5, 4, 1, 1, 1, 1, 1, 1, 1, 1, 28, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 14, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 24, 3, 6, 3, 3, 3, 3, 1
OFFSET
1,2
COMMENTS
The one-part partition n = n is included in the count.
The column k is related to (k+2)-gonal numbers, assuming that 2-gonals are the nonnegative numbers, 3-gonals are the triangular numbers, 4-gonals are the squares, 5-gonals are the pentagonal numbers, and so on.
Note that the number of parts for T(n,0) = A000203(n), equaling the sum of the divisors of n.
For fixed k>0, Sum_{j=1..n} T(j,k) ~ 2^(3/2) * n^(3/2) / (3*sqrt(k)). - Vaclav Kotesovec, Oct 23 2024
FORMULA
The g.f. for column k is Sum_{n>=1} n*x^(n*(k*n-k+2)/2)/(1-x^n). (For proof, see A330889. - N. J. A. Sloane, Nov 21 2020)
EXAMPLE
Square array starts:
n\k| 0 1 2 3 4 5 6 7 8 9 10 11 12
---+---------------------------------------------
1 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
2 | 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
3 | 4, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
4 | 7, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
5 | 6, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
6 | 12, 4, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, ...
7 | 8, 3, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, ...
8 | 15, 1, 3, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, ...
9 | 13, 6, 4, 3, 1, 3, 1, 3, 1, 1, 1, 1, 1, ...
10 | 18, 5. 3. 1. 3. 1, 3, 1, 3, 1, 1, 1, 1, ...
11 | 12, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 1, 1, ...
12 | 28, 4, 6, 4, 3, 1, 3, 1, 3, 1, 3, 1, 1, ...
...
For n = 9 we have that:
For k = 0 the partitions of 9 into consecutive parts that differ by 0 (or simply: the partitions of 9 into equal parts) are [9], [3,3,3], [1,1,1,1,1,1,1,1,1]. In total there are 13 parts, so T(9,0) = 13.
For k = 1 the partitions of 9 into consecutive parts that differ by 1 (or simply: the partitions of 9 into consecutive parts) are [9], [5,4], [4,3,2]. In total there are six parts, so T(9,1) = 6.
For k = 2 the partitions of 9 into consecutive parts that differ by 2 are [9], [5, 3, 1]. In total there are four parts, so T(9,2) = 4.
MATHEMATICA
nmax = 14;
col[k_] := col[k] = CoefficientList[Sum[n x^(n(k n - k + 2)/2)/(1 - x^n), {n, 1, nmax}] + O[x]^(nmax+1), x];
T[n_, k_] := col[k][[n+1]];
Table[T[n-k, k], {n, 1, nmax}, {k, 0, n-1}] // Flatten (* Jean-François Alcover, Nov 30 2020 *)
CROSSREFS
Columns k: A000203 (k=0), A204217 (k=1), A066839 (k=2), A330889 (k=3), A334464 (k=4), A334732 (k=5), A334949 (k=6), A377300 (k=7), A377301 (k=8).
Triangles whose row sums give the column k: A127093 (k=0), A285914 (k=1), A330466 (k=2) (conjectured), A330888 (k=3), A334462 (k=4), A334540 (k=5), A339947 (k=6).
Sequences of number of partitions related to column k: A000005 (k=0), A001227 (k=1), A038548 (k=2), A117277 (k=3), A334461 (k=4), A334541 (k=5), A334948 (k=6).
Tables of partitions related to column k: A010766 (k=0), A286001 (k=1), A332266 (k=2), A334945 (k=3), A334618 (k=4).
Polygonal numbers related to column k: A001477 (k=0), A000217 (k=1), A000290 (k=2), A000326 (k=3), A000384 (k=4), A000566 (k=5), A000567 (k=6).
Sequence in context: A302240 A130307 A130314 * A127057 A143355 A143319
KEYWORD
nonn,tabl,changed
AUTHOR
Omar E. Pol, May 01 2020
STATUS
approved