login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A377300
G.f.: Sum_{k>=1} k * x^(k*(7*k - 7 + 2)/2) / (1 - x^k).
2
1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 4, 3, 1, 6, 1, 3, 4, 3, 1, 6, 1, 3, 4, 3, 1, 6, 1, 3, 4, 3, 1, 6, 5, 3, 4, 3, 5, 6, 1, 3, 8, 3, 1, 6, 5, 3, 4, 3, 5, 6, 1, 3, 8, 3, 1, 6, 5, 3, 4, 3, 5, 11, 1, 3, 8, 3, 6, 6, 5, 3, 4, 8, 5, 6, 1, 3, 13
OFFSET
1,9
COMMENTS
In general, for d > 0, if g.f. = Sum_{k>=1} k * x^(k*(d*k - d + 2)/2) / (1 - x^k), then Sum_{k=1..n} a(k) ~ 2^(3/2) * n^(3/2) / (3*sqrt(d)).
LINKS
FORMULA
Sum_{k=1..n} a(k) ~ 2^(3/2) * n^(3/2) / (3*sqrt(7)).
MATHEMATICA
Table[Sum[If[n > 7*k*(k-1)/2 && IntegerQ[n/k - 7*(k-1)/2], k, 0], {k, Divisors[2*n]}], {n, 1, 100}]
nmax = 100; Rest[CoefficientList[Series[Sum[k*x^(k*(7*k - 7 + 2)/2)/(1 - x^k), {k, 1, Sqrt[2*nmax/7] + 1}], {x, 0, nmax}], x]]
CROSSREFS
Column 7 of A334466.
Sequence in context: A176040 A125768 A377301 * A334949 A334732 A266875
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Oct 23 2024
STATUS
approved