login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A334953
a(n) is the sum of all parts of all partitions of n into consecutive parts that differ by 6.
6
1, 2, 3, 4, 5, 6, 7, 16, 9, 20, 11, 24, 13, 28, 15, 32, 17, 36, 19, 40, 42, 44, 23, 72, 25, 52, 54, 56, 29, 90, 31, 64, 66, 68, 35, 108, 37, 76, 78, 120, 41, 126, 43, 132, 90, 92, 47, 192, 49, 100, 102, 156, 53, 162, 55, 168, 114, 116, 59, 240, 61, 124, 126, 192, 130, 198, 67, 204, 138, 210
OFFSET
1,2
COMMENTS
The one-part partition n = n is included in the count.
FORMULA
a(n) = n*A334948(n).
EXAMPLE
For n = 24 there are three partitions of 24 into consecutive parts that differ by 6, including 24 as a valid partition. They are [24], [15, 9] and [14, 8, 2]. The sum of all parts is [24] + [15 + 9] + [14 + 8 + 2] = 72, so a(24) = 72.
CROSSREFS
Sequences of the same family where the parts differs by k are: A038040 (k=0), A245579 (k=1), A060872 (k=2), A334463 (k=3), A327262 (k=4), A334733 (k=5), this sequence (k=6).
Sequence in context: A356194 A065640 A264974 * A308334 A161673 A368533
KEYWORD
nonn
AUTHOR
Omar E. Pol, May 27 2020
STATUS
approved