OFFSET
1,3
COMMENTS
EXAMPLE
The terms together with their binary expansions and binary indices begin:
0: 0 ~ {}
1: 1 ~ {1}
2: 10 ~ {2}
3: 11 ~ {1,2}
4: 100 ~ {3}
5: 101 ~ {1,3}
6: 110 ~ {2,3}
7: 111 ~ {1,2,3}
16: 10000 ~ {5}
17: 10001 ~ {1,5}
18: 10010 ~ {2,5}
19: 10011 ~ {1,2,5}
20: 10100 ~ {3,5}
21: 10101 ~ {1,3,5}
22: 10110 ~ {2,3,5}
23: 10111 ~ {1,2,3,5}
32: 100000 ~ {6}
33: 100001 ~ {1,6}
34: 100010 ~ {2,6}
35: 100011 ~ {1,2,6}
36: 100100 ~ {3,6}
37: 100101 ~ {1,3,6}
38: 100110 ~ {2,3,6}
MATHEMATICA
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]], 1];
Select[Range[0, 100], And@@SquareFreeQ/@bpe[#]&]
PROG
(Python)
from math import isqrt
from sympy import mobius
def A368533(n):
def f(x, n): return int(n+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1)))
def A005117(n):
m, k = n, f(n, n)
while m != k: m, k = k, f(k, n)
return m
return sum(1<<A005117(i)-1 for i, j in enumerate(bin(n-1)[:1:-1], 1) if j=='1') # Chai Wah Wu, Oct 24 2024
CROSSREFS
For prime indices instead of binary indices we have A302478.
The case of prime binary indices is A326782.
The case of squarefree product is A371289.
For prime-power product we have A371290.
A005117 lists squarefree numbers.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
KEYWORD
nonn,base
AUTHOR
Gus Wiseman, Mar 23 2024
STATUS
approved