login
A368530
a(n) = Sum_{k=1..n} k^3 * 4^(n-k).
1
0, 1, 12, 75, 364, 1581, 6540, 26503, 106524, 426825, 1708300, 6834531, 27339852, 109361605, 437449164, 1749800031, 6999204220, 27996821793, 111987293004, 447949178875, 1791796723500, 7167186903261, 28668747623692, 114674990506935, 458699962041564
OFFSET
0,3
FORMULA
G.f.: x * (1+4*x+x^2)/((1-4*x) * (1-x)^4).
a(n) = 8*a(n-1) - 22*a(n-2) + 28*a(n-3) - 17*a(n-4) + 4*a(n-5).
a(n) = (11*4^(n+1) - (9*n^3 + 36*n^2 + 60*n + 44))/27.
a(0) = 0; a(n) = 4*a(n-1) + n^3.
PROG
(PARI) a(n) = sum(k=1, n, k^3*4^(n-k));
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Dec 29 2023
STATUS
approved