login
A371290
Numbers whose product of binary indices is a prime power > 1.
2
1, 2, 3, 4, 5, 8, 9, 10, 11, 16, 17, 64, 65, 128, 129, 130, 131, 136, 137, 138, 139, 256, 257, 260, 261, 1024, 1025, 4096, 4097, 32768, 32769, 32770, 32771, 32776, 32777, 32778, 32779, 32896, 32897, 32898, 32899, 32904, 32905, 32906, 32907, 65536, 65537, 262144
OFFSET
1,2
COMMENTS
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
EXAMPLE
The terms together with their binary expansions and binary indices begin:
1: 1 ~ {1}
2: 10 ~ {2}
3: 11 ~ {1,2}
4: 100 ~ {3}
5: 101 ~ {1,3}
8: 1000 ~ {4}
9: 1001 ~ {1,4}
10: 1010 ~ {2,4}
11: 1011 ~ {1,2,4}
16: 10000 ~ {5}
17: 10001 ~ {1,5}
64: 1000000 ~ {7}
65: 1000001 ~ {1,7}
128: 10000000 ~ {8}
129: 10000001 ~ {1,8}
130: 10000010 ~ {2,8}
131: 10000011 ~ {1,2,8}
136: 10001000 ~ {4,8}
137: 10001001 ~ {1,4,8}
138: 10001010 ~ {2,4,8}
139: 10001011 ~ {1,2,4,8}
256: 100000000 ~ {9}
257: 100000001 ~ {1,9}
260: 100000100 ~ {3,9}
261: 100000101 ~ {1,3,9}
1024: 10000000000 ~ {11}
1025: 10000000001 ~ {1,11}
4096: 1000000000000 ~ {13}
4097: 1000000000001 ~ {1,13}
32768: 1000000000000000 ~ {16}
MATHEMATICA
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]], 1];
Select[Range[1000], #==1||PrimePowerQ[Times@@bpe[#]]&]
CROSSREFS
For powers of 2 we have A253317.
For prime indices we have A320698.
For squarefree numbers instead of prime powers we have A371289.
A000040 lists prime numbers.
A000961 lists prime-powers.
A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
Sequence in context: A023775 A363235 A329296 * A356713 A032867 A031999
KEYWORD
nonn,base
AUTHOR
Gus Wiseman, Mar 27 2024
STATUS
approved