OFFSET
1,2
COMMENTS
EXAMPLE
The terms together with their prime indices of binary indices begin:
1: {{}}
2: {{1}}
3: {{},{1}}
6: {{1},{2}}
7: {{},{1},{2}}
22: {{1},{2},{3}}
23: {{},{1},{2},{3}}
32: {{1,2}}
33: {{},{1,2}}
48: {{3},{1,2}}
49: {{},{3},{1,2}}
86: {{1},{2},{3},{4}}
87: {{},{1},{2},{3},{4}}
112: {{3},{1,2},{4}}
113: {{},{3},{1,2},{4}}
516: {{2},{1,3}}
517: {{},{2},{1,3}}
580: {{2},{4},{1,3}}
581: {{},{2},{4},{1,3}}
MATHEMATICA
normQ[m_]:=m=={}||Union[m]==Range[Max[m]];
prix[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]], 1];
Select[Range[1000], SquareFreeQ[Times @@ bpe[#]]&&normQ[Join@@prix/@bpe[#]]&]
CROSSREFS
Without the covering condition we have A371289.
Without squarefree product we have A371292.
Interchanging binary and prime indices gives A371448.
A005117 lists squarefree numbers.
A011782 counts multisets covering an initial interval.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A131689 counts patterns by number of distinct parts.
A326701 lists BII-numbers of set partitions.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 28 2024
STATUS
approved