login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A371296
E.g.f. satisfies A(x) = 1/(3 - 2*exp(x*A(x)^2)).
1
1, 2, 26, 674, 26682, 1429682, 96867178, 7946279490, 765861255002, 84837503946962, 10621798904563530, 1483378875680954210, 228626616449674796602, 38549099486166110798322, 7058696888173770772536362, 1394913467379909728350803074, 295904373562519633314958421274
OFFSET
0,2
FORMULA
a(n) = (1/(2*n+1)!) * Sum_{k=0..n} 2^k * (2*n+k)! * Stirling2(n,k).
PROG
(PARI) a(n) = sum(k=0, n, 2^k*(2*n+k)!*stirling(n, k, 2))/(2*n+1)!;
CROSSREFS
Cf. A367134.
Sequence in context: A377547 A377632 A090247 * A373869 A371297 A206601
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 18 2024
STATUS
approved