%I #9 Mar 28 2024 11:58:06
%S 1,2,3,4,5,8,9,10,11,16,17,64,65,128,129,130,131,136,137,138,139,256,
%T 257,260,261,1024,1025,4096,4097,32768,32769,32770,32771,32776,32777,
%U 32778,32779,32896,32897,32898,32899,32904,32905,32906,32907,65536,65537,262144
%N Numbers whose product of binary indices is a prime power > 1.
%C A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
%e The terms together with their binary expansions and binary indices begin:
%e 1: 1 ~ {1}
%e 2: 10 ~ {2}
%e 3: 11 ~ {1,2}
%e 4: 100 ~ {3}
%e 5: 101 ~ {1,3}
%e 8: 1000 ~ {4}
%e 9: 1001 ~ {1,4}
%e 10: 1010 ~ {2,4}
%e 11: 1011 ~ {1,2,4}
%e 16: 10000 ~ {5}
%e 17: 10001 ~ {1,5}
%e 64: 1000000 ~ {7}
%e 65: 1000001 ~ {1,7}
%e 128: 10000000 ~ {8}
%e 129: 10000001 ~ {1,8}
%e 130: 10000010 ~ {2,8}
%e 131: 10000011 ~ {1,2,8}
%e 136: 10001000 ~ {4,8}
%e 137: 10001001 ~ {1,4,8}
%e 138: 10001010 ~ {2,4,8}
%e 139: 10001011 ~ {1,2,4,8}
%e 256: 100000000 ~ {9}
%e 257: 100000001 ~ {1,9}
%e 260: 100000100 ~ {3,9}
%e 261: 100000101 ~ {1,3,9}
%e 1024: 10000000000 ~ {11}
%e 1025: 10000000001 ~ {1,11}
%e 4096: 1000000000000 ~ {13}
%e 4097: 1000000000001 ~ {1,13}
%e 32768: 1000000000000000 ~ {16}
%t bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
%t Select[Range[1000],#==1||PrimePowerQ[Times@@bpe[#]]&]
%Y For powers of 2 we have A253317.
%Y For prime indices we have A320698.
%Y For squarefree numbers instead of prime powers we have A371289.
%Y A000040 lists prime numbers.
%Y A000961 lists prime-powers.
%Y A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum.
%Y A070939 gives length of binary expansion.
%Y A096111 gives product of binary indices.
%Y Cf. A005117, A326782, A368533, A371292, A371443, A371452.
%K nonn,base
%O 1,2
%A _Gus Wiseman_, Mar 27 2024