login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A368536
a(n) = Sum_{k=1..n} binomial(k+1,2) * n^k.
1
0, 1, 14, 192, 2996, 53955, 1110786, 25808160, 668740808, 19129643325, 598902606310, 20371538593296, 748148581865532, 29505258575474591, 1243695052515891626, 55800352470853933440, 2655106829377875895056, 133547801741230053460761
OFFSET
0,3
FORMULA
a(n) = [x^n] n*x/((1-x) * (1-n*x)^3).
a(n) = n * (n^n * (n^4-n^3-3*n^2+3*n+2) - 2)/(2 * (n-1)^3) for n > 1.
PROG
(PARI) a(n) = sum(k=1, n, binomial(k+1, 2)*n^k);
CROSSREFS
Cf. A368526.
Sequence in context: A198657 A055759 A368702 * A275084 A379613 A086946
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Dec 29 2023
STATUS
approved