login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A011751
Expansion of (1 + x^4)/(1 + x + x^3 + x^4 + x^5) mod 2.
23
1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0
OFFSET
0,1
LINKS
R. Gold, Characteristic linear sequences and their coset functions, J. SIAM Applied. Math., 14 (1966), 980-985.
Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1), i.e., 31-periodic.
FORMULA
a(n+31) = a(n) for all n. - M. F. Hasler, Feb 17 2018
MAPLE
series((1+x^4)/(1+x+x^3+x^4+x^5), x, 100) mod 2;
[seq(coeff(series((1+x^4)/(1+x+x^3+x^4+x^5), x, 100) mod 2, x, n), n=0..80)]; # Muniru A Asiru, Feb 18 2018
A011751 := n -> coeftayl((1+x^4)/(1+x+x^3+x^4+x^5), x=0, n) mod 2 # M. F. Hasler, Feb 18 2018
MATHEMATICA
Mod[ CoefficientList[ Series[(1 + x^4)/(1 + x + x^3 + x^4 + x^5), {x, 0, 105}], x], 2] (* Robert G. Wilson v, Feb 19 2018 *)
PROG
(PARI) a(n)=bittest(1826728215, n%31) \\ M. F. Hasler, Feb 17 2018
CROSSREFS
Cf. A011655..A011750 for other binary m-sequences.
Sequence in context: A255738 A296209 A076141 * A341540 A214507 A093709
KEYWORD
nonn,easy
STATUS
approved