The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A011751 Expansion of (1 + x^4)/(1 + x + x^3 + x^4 + x^5) mod 2. 23
 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS Muniru A Asiru, Table of n, a(n) for n = 0..1000 Michael Gilleland, Some Self-Similar Integer Sequences R. Gold, Characteristic linear sequences and their coset functions, J. SIAM Applied. Math., 14 (1966), 980-985. Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1), i.e., 31-periodic. FORMULA a(n+31) = a(n) for all n. - M. F. Hasler, Feb 17 2018 MAPLE series((1+x^4)/(1+x+x^3+x^4+x^5), x, 100) mod 2; [seq(coeff(series((1+x^4)/(1+x+x^3+x^4+x^5), x, 100) mod 2, x, n), n=0..80)]; # Muniru A Asiru, Feb 18 2018 A011751 := n -> coeftayl((1+x^4)/(1+x+x^3+x^4+x^5), x=0, n) mod 2 # M. F. Hasler, Feb 18 2018 MATHEMATICA Mod[ CoefficientList[ Series[(1 + x^4)/(1 + x + x^3 + x^4 + x^5), {x, 0, 105}], x], 2] (* Robert G. Wilson v, Feb 19 2018 *) PROG (PARI) a(n)=bittest(1826728215, n%31) \\ M. F. Hasler, Feb 17 2018 CROSSREFS Cf. A011655..A011750 for other binary m-sequences. Sequence in context: A255738 A296209 A076141 * A341540 A214507 A093709 Adjacent sequences:  A011748 A011749 A011750 * A011752 A011753 A011754 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 13 00:24 EDT 2021. Contains 342934 sequences. (Running on oeis4.)