login
A178651
Expansion of the polynomial (1+x^3)*(1+x^11)*(1+x^15)*(1+x^19)*(1+x^23)*(1+x^27)*(1+x^35)
2
1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 2, 1, 0, 1, 2, 0, 0, 1, 2, 1, 0, 2, 3, 0, 0, 2, 2, 0, 0, 3, 2, 0, 1, 3, 2, 0, 1, 4, 1, 0, 2, 3, 1, 0, 2, 4, 1, 0, 3, 3, 0, 0, 3, 3, 0, 1, 4, 2, 0, 1, 3, 2, 0, 1, 4, 1, 0, 2, 3, 1, 0, 2, 3, 0, 0, 2, 2, 0, 0, 3, 2, 0, 1, 2, 1, 0, 0, 2, 1, 0, 1, 2, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1
OFFSET
0,27
COMMENTS
This is the Poincaré polynomial for the Lie group E_7.
REFERENCES
Borel, A. and Chevalley, C., The Betti numbers of the exceptional groups, Mem. Amer. Math. Soc. 1955, no. 14, pp 1-9.
MATHEMATICA
CoefficientList[Series[(1+x^3)(1+x^11)(1+x^15)(1+x^19)(1+x^23)(1+x^27)(1+x^35), {x, 0, 140}], x] (* Harvey P. Dale, Oct 12 2014 *)
CROSSREFS
Sequence in context: A085860 A178665 A170958 * A046810 A328515 A356682
KEYWORD
nonn,fini,full,easy
AUTHOR
N. J. A. Sloane, Dec 24 2010
STATUS
approved