Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Aug 21 2015 14:29:10
%S 1,1,0,0,1,1,0,0,1,0,1,0,0,1,1,0,0,1,0,1,0,1,1,0,1,0,1,0,0,1,1,0,0,1,
%T 0,1,0,1,1,1,1,0,2,0,1,1,1,1,0,1,0,1,0,0,1,1,0,0,1,0,1,0,1,1,1,1,1,2,
%U 0,2,1,2,1,1,2,1,2,0,2,1,1,1,1,1,0,1,0,1,0,0,1,1,0,0,1,0,1,0,1,1,1,1,1,2,1,2
%N Irregular triangle read by rows: row n gives coefficients in expansion of Product_{k=1..n} (1 + x^(2*k + 1)) for n >= 0.
%C For n >= 1, row n is the Poincaré polynomial for the Lie group A_n.
%C Row sums are powers of 2.
%D Borel, A. and Chevalley, C., The Betti numbers of the exceptional groups, Mem. Amer. Math. Soc. 1955, no. 14, pp 1-9.
%D Samuel I. Goldberg, Curvature and Homology, Dover, New York, 1998, page 144
%H Alois P. Heinz, <a href="/A142724/b142724.txt">Rows n = 0..40, flattened</a>
%F p(x,n) = Product[(1 + x^(2*k + 1)), {k, 1, n}]; t(n,m)=coefficients(p(x,n)).
%e Triangle begins:
%e {1} (the empty product)
%e {1, 0, 0, 1},
%e {1, 0, 0, 1, 0, 1, 0, 0, 1},
%e {1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1},
%e {1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 2, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1},
%e {1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 2, 0, 2, 1, 2, 1, 1, 2, 1, 2, 0, 2, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1},
%e ...
%p A:=n->mul(1+x^(2*r+1),r=1..n);
%p for n from 1 to 12 do lprint(seriestolist(series(A(n),x,10000))); od:
%t Clear[p, x, n, m]; p[x_, n_] = Product[(1 + x^(2*k + 1)), {k, 1, n}]; Table[CoefficientList[p[x, n], x], {n, 1, 10}]; Flatten[%]
%Y Cf. A178600, A178602, A178580, A178651, A178665, A178666.
%Y Rows: A178686. A178687, A178691, A178692, A178695, A178696, A178697.
%K nonn,tabf
%O 0,43
%A _Roger L. Bagula_ and _Gary W. Adamson_, Sep 26 2008
%E Edited by _N. J. A. Sloane_, Dec 25 2010