login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A024321
a(n) = s(1)*t(n) + s(2)*t(n-1) + ... + s(k)*t(n+1-k), where k = floor((n+1)/2), s = A023531, t = (composite numbers).
17
0, 0, 6, 8, 9, 10, 12, 14, 25, 28, 32, 35, 37, 40, 44, 46, 64, 69, 73, 77, 81, 85, 89, 93, 96, 100, 128, 133, 139, 144, 148, 154, 162, 166, 170, 176, 181, 187, 223, 229, 236, 242, 248, 255, 262, 268, 275, 281, 287, 294, 301, 308, 354, 361, 370, 380, 386, 394, 401, 408, 418, 425
OFFSET
1,3
LINKS
FORMULA
a(n) = Sum_{j=1..floor((n+1)/2)} A023531(j)*A002808(n-j+1). - G. C. Greubel, Jan 19 2022
MATHEMATICA
A023531[n_]:= SquaresR[1, 8n+9]/2;
Composite[n_]:= FixedPoint[n +PrimePi[#] +1 &, n];
a[n_]:= Sum[A023531[j]*Composite[n-j+1], {j, Floor[(n+1)/2]}];
Table[a[n], {n, 70}] (* G. C. Greubel, Jan 19 2022 *)
PROG
(Magma)
A002808:= [n : n in [2..100] | not IsPrime(n) ];
A023531:= func< n | IsIntegral( (Sqrt(8*n+9) -3)/2 ) select 1 else 0 >;
[ (&+[A023531(j)*A002808[n-j+1]: j in [1..Floor((n+1)/2)]]) : n in [1..70]]; // G. C. Greubel, Jan 19 2022
(Sage)
A002808 = [n for n in (1..250) if sloane.A001222(n) > 1]
def A023531(n):
if ((sqrt(8*n+9) -3)/2).is_integer(): return 1
else: return 0
[sum( A023531(j)*A002808[n-j] for j in (1..floor((n+1)/2)) ) for n in (1..70)] # G. C. Greubel, Jan 19 2022
KEYWORD
nonn
STATUS
approved