login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
Search: briggs
Displaying 1-10 of 134 results found. page 1 2 3 4 5 6 7 8 9 10 ... 14
     Sort: relevance | references | number | modified | created      Format: long | short | data
A000081 Number of unlabeled rooted trees with n nodes (or connected functions with a fixed point).
(Formerly M1180 N0454)
+10
689
0, 1, 1, 2, 4, 9, 20, 48, 115, 286, 719, 1842, 4766, 12486, 32973, 87811, 235381, 634847, 1721159, 4688676, 12826228, 35221832, 97055181, 268282855, 743724984, 2067174645, 5759636510, 16083734329, 45007066269, 126186554308, 354426847597, 997171512998 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,4
COMMENTS
Also, number of ways of arranging n-1 nonoverlapping circles: e.g., there are 4 ways to arrange 3 circles, as represented by ((O)), (OO), (O)O, OOO, also see example. (Of course the rules here are different from the usual counting parentheses problems - compare A000108, A001190, A001699.) See Sloane's link for a proof and Vogeler's link for illustration of a(7) as arrangement of 6 circles.
Take a string of n x's and insert n-1 ^'s and n-1 pairs of parentheses in all possible legal ways (cf. A003018). Sequence gives number of distinct functions. The single node tree is "x". Making a node f2 a child of f1 represents f1^f2. Since (f1^f2)^f3 is just f1^(f2*f3) we can think of it as f1 raised to both f2 and f3, that is, f1 with f2 and f3 as children. E.g., for n=4 the distinct functions are ((x^x)^x)^x; (x^(x^x))^x; x^((x^x)^x); x^(x^(x^x)). - W. Edwin Clark and Russ Cox Apr 29, 2003; corrected by _Keith Briggs_, Nov 14 2005
Also, number of connected multigraphs of order n without cycles except for one loop. - Washington Bomfim, Sep 04 2010
Also, number of planted trees with n+1 nodes.
Also called "Polya trees" by Genitrini (2016). - N. J. A. Sloane, Mar 24 2017
REFERENCES
F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 279.
N. L. Biggs et al., Graph Theory 1736-1936, Oxford, 1976, pp. 42, 49.
Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, pages 305, 998.
A. Cayley, On the analytical forms called trees, with application to the theory of chemical combinations, Reports British Assoc. Advance. Sci. 45 (1875), 257-305 = Math. Papers, Vol. 9, 427-460 (see p. 451).
J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 526.
F. Harary, Graph Theory. Addison-Wesley, Reading, MA, 1969, p. 232.
F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, pp. 54 and 244.
Alexander S. Karpenko, Łukasiewicz Logics and Prime Numbers, Luniver Press, Beckington, 2006, p. 82.
D. E. Knuth, The Art of Computer Programming, Vol. 1: Fundamental Algorithms, 3d Ed. 1997, pp. 386-388.
D. E. Knuth, The Art of Computer Programming, vol. 1, 3rd ed., Fundamental Algorithms, p. 395, ex. 2.
D. E. Knuth, TAOCP, Vol. 4, Section 7.2.1.6.
G. Polya and R. C. Read, Combinatorial Enumeration of Groups, Graphs and Chemical Compounds, Springer-Verlag, 1987, p. 63.
R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998. [Comment from Neven Juric: Page 64 incorrectly gives a(21)=35224832.]
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 138.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Robert G. Wilson v, Table of n, a(n) for n = 0..1000 (first 201 terms from N. J. A. Sloane)
M. J. H. Al-Kaabi, D. Manchon and F. Patras, Monomial bases and pre-Lie structure for free Lie algebras, arXiv:1708.08312 [math.RA], 2017, See p. 5.
Lluís Alemany-Puig and Ramon Ferrer-i-Cancho, Linear-time calculation of the expected sum of edge lengths in random projective linearizations of trees, arXiv:2107.03277 [cs.CL], 2021.
Winfried Auzinger, H Hofstaetter and O Koch, Symbolic Manipulation of Flows of Nonlinear Evolution Equations, with Application in the Analysis of Split-Step Time Integrators, arXiv preprint arXiv:1605.00453 [math.NA], 2016.
A. Cayley, On the analytical forms called trees, Amer. J. Math., 4 (1881), 266-268.
Bartomeu Fiol, Jairo Martínez-Montoya and Alan Rios Fukelman, The planar limit of N=2 superconformal field theories, arXiv:2003.02879 [hep-th], 2020.
P. Flajolet, S. Gerhold and B. Salvy, On the non-holonomic character of logarithms, powers and the n-th prime function, arXiv:math/0501379 [math.CO], 2005.
P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 71.
Loïc Foissy, Algebraic structures on typed decorated rooted trees, arXiv:1811.07572 [math.RA], 2018.
A. Genitrini, Full asymptotic expansion for Polya structures, arXiv:1605.00837 [math.CO], May 03 2016, p. 6.
Ira M. Gessel, Good Will Hunting's Problem: Counting Homeomorphically Irreducible Trees, arXiv:2305.03157 [math.CO], 2023.
Bernhard Gittenberger, Emma Yu Jin and Michael Wallner, On the shape of random Pólya structures, arXiv|1707.02144 [math.CO], 2017-2018; Discrete Math., 341 (2018), 896-911.
F. Goebel, On a 1-1-correspondence between rooted trees and natural numbers, J. Combin. Theory, B 29 (1980), 141-143.
F. Goebel and R. P. Nederpelt, The number of numerical outcomes of iterated powers, Amer. Math. Monthly, 80 (1971), 1097-1103.
Mika Göös and Jukka Suomela, Locally checkable proofs in distributed computing Theory Comput. 12, Paper No. 19, 33 p. (2016).
Vsevolod Gubarev, Rota-Baxter operators on a sum of fields, arXiv:1811.08219 [math.RA], 2018.
Ivan Gutman and Yeong-Nan Yeh, Deducing properties of trees from their Matula numbers, Publications de l'Institut Mathématique (Beograd) (N.S.), Vol. 53(67), pp. 17--22 (1993).
R. K. Guy, Letter to N. J. A. Sloane, 1988-04-12 (annotated scanned copy)
R. K. Guy and J. L. Selfridge, The nesting and roosting habits of the laddered parenthesis (annotated cached copy)
R. K. Guy and J. L. Selfridge, The nesting and roosting habits of the laddered parenthesis, Amer. Math. Monthly 80 (8) (1973), 868-876.
F. Harary and G. Prins, The number of homeomorphically irreducible trees, and other species, Acta Math. 101 (1-2) (1959) 141-161, see page 146.
F. Harary and R. W. Robinson, The number of achiral trees, Jnl. Reine Angewandte Mathematik 278 (1975), 322-335. (Annotated scanned copy)
R. Harary and R. W. Robinson, Isomorphic factorizations VIII: bisectable trees, Combinatorica 4 (2) (1984) 169-179, eq. (4.3)
E. Kalinowski and W. Gluza, Evaluation of High Order Terms for the Hubbard Model in the Strong-Coupling Limit, arXiv:1106.4938 [cond-mat.str-el], 2011 (Physical Review B 85, 045105, Jan 2012).
P. Leroux and B. Miloudi, Généralisations de la formule d'Otter, Ann. Sci. Math. Québec, Vol. 16, No. 1, pp. 53-80, 1992. (Annotated scanned copy)
Dominique Manchon, On the mathematics of rooted trees, Université Clermont-Auvergne (France, 2019).
Math Overflow, Discussion
R. J. Mathar, Topologically Distinct Sets of Non-intersecting Circles in the Plane, arXiv:1603.00077 [math.CO], 2016.
R. I. McLachlan, K. Modin, H. Munthe-Kaas and O. Verdier, What are Butcher series, really? The story of rooted trees and numerical methods for evolution equations, arXiv preprint arXiv:1512.00906 [math.NA], 2015.
Igor Pak, Complexity problems in enumerative combinatorics, arXiv:1803.06636 [math.CO], 2018.
E. M. Palmer and A. J. Schwenk, On the number of trees in a random forest, J. Combin. Theory, B 27 (1979), 109-121.
N. Pippenger, Enumeration of equicolorable trees, SIAM J. Discrete Math., 14 (2001), 93-115.
G. Polya, Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische Verbindungen, Acta Mathematica, vol. 68, no. 1, pp. 145-254, (1937).
N. J. A. Sloane, "A Handbook of Integer Sequences" Fifty Years Later, arXiv:2301.03149 [math.NT], 2023, p. 1.
Peter Steinbach, Field Guide to Simple Graphs, Volume 1, Part 17 (For Volumes 1, 2, 3, 4 of this book see A000088, A008406, A000055, A000664, respectively.)
Peter Steinbach, Field Guide to Simple Graphs, Volume 3, Part 10 (For Volumes 1, 2, 3, 4 of this book see A000088, A008406, A000055, A000664, respectively.)
Peter Steinbach, Field Guide to Simple Graphs, Volume 3, Part 12 (For Volumes 1, 2, 3, 4 of this book see A000088, A008406, A000055, A000664, respectively.)
Roger Vogeler, Six Circles, 2015 (illustration for a(7) as the number of arrangements of six circles).
Eric Weisstein's World of Mathematics, Rooted Tree
Eric Weisstein's World of Mathematics, Planted Tree
G. Xiao, Contfrac
FORMULA
G.f. A(x) satisfies A(x) = x*exp(A(x)+A(x^2)/2+A(x^3)/3+A(x^4)/4+...) [Polya]
Also A(x) = Sum_{n>=1} a(n)*x^n = x / Product_{n>=1} (1-x^n)^a(n).
Recurrence: a(n+1) = (1/n) * Sum_{k=1..n} ( Sum_{d|k} d*a(d) ) * a(n-k+1).
Asymptotically c * d^n * n^(-3/2), where c = A187770 = 0.439924... and d = A051491 = 2.955765... [Polya; Knuth, section 7.2.1.6].
Euler transform is sequence itself with offset -1. - Michael Somos, Dec 16 2001
For n > 1, a(n) = A087803(n) - A087803(n-1). - Vladimir Reshetnikov, Nov 06 2015
For n > 1, a(n) = A123467(n-1). - Falk Hüffner, Nov 26 2015
EXAMPLE
G.f. = x + x^2 + 2*x^3 + 4*x^4 + 9*x^5 + 20*x^6 + 48*x^7 + 115*x^8 + ...
From Joerg Arndt, Jun 29 2014: (Start)
The a(6) = 20 trees with 6 nodes have the following level sequences (with level of root = 0) and parenthesis words:
01: [ 0 1 2 3 4 5 ] (((((())))))
02: [ 0 1 2 3 4 4 ] ((((()()))))
03: [ 0 1 2 3 4 3 ] ((((())())))
04: [ 0 1 2 3 4 2 ] ((((()))()))
05: [ 0 1 2 3 4 1 ] ((((())))())
06: [ 0 1 2 3 3 3 ] (((()()())))
07: [ 0 1 2 3 3 2 ] (((()())()))
08: [ 0 1 2 3 3 1 ] (((()()))())
09: [ 0 1 2 3 2 3 ] (((())(())))
10: [ 0 1 2 3 2 2 ] (((())()()))
11: [ 0 1 2 3 2 1 ] (((())())())
12: [ 0 1 2 3 1 2 ] (((()))(()))
13: [ 0 1 2 3 1 1 ] (((()))()())
14: [ 0 1 2 2 2 2 ] ((()()()()))
15: [ 0 1 2 2 2 1 ] ((()()())())
16: [ 0 1 2 2 1 2 ] ((()())(()))
17: [ 0 1 2 2 1 1 ] ((()())()())
18: [ 0 1 2 1 2 1 ] ((())(())())
19: [ 0 1 2 1 1 1 ] ((())()()())
20: [ 0 1 1 1 1 1 ] (()()()()())
(End)
MAPLE
N := 30: a := [1, 1]; for n from 3 to N do x*mul( (1-x^i)^(-a[i]), i=1..n-1); series(%, x, n+1); b := coeff(%, x, n); a := [op(a), b]; od: a; A000081 := proc(n) if n=0 then 1 else a[n]; fi; end; G000081 := series(add(a[i]*x^i, i=1..N), x, N+2); # also used in A000055
spec := [ T, {T=Prod(Z, Set(T))} ]; A000081 := n-> combstruct[count](spec, size=n); [seq(combstruct[count](spec, size=n), n=0..40)];
# a much more efficient method for computing the result with Maple. It uses two procedures:
a := proc(n) local k; a(n) := add(k*a(k)*s(n-1, k), k=1..n-1)/(n-1) end proc:
a(0) := 0: a(1) := 1: s := proc(n, k) local j; s(n, k) := add(a(n+1-j*k), j=1..iquo(n, k)); # Joe Riel (joer(AT)san.rr.com), Jun 23 2008
# even more efficient, uses the Euler transform:
with(numtheory): a:= proc(n) option remember; local d, j; `if`(n<=1, n, (add(add(d*a(d), d=divisors(j)) *a(n-j), j=1..n-1))/ (n-1)) end:
seq(a(n), n=0..50); # Alois P. Heinz, Sep 06 2008
MATHEMATICA
s[ n_, k_ ] := s[ n, k ]=a[ n+1-k ]+If[ n<2k, 0, s[ n-k, k ] ]; a[ 1 ]=1; a[ n_ ] := a[ n ]=Sum[ a[ i ]s[ n-1, i ]i, {i, 1, n-1} ]/(n-1); Table[ a[ i ], {i, 1, 30} ] (* Robert A. Russell *)
a[n_] := a[n] = If[n <= 1, n, Sum[Sum[d*a[d], {d, Divisors[j]}]*a[n-j], {j, 1, n-1}]/(n-1)]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 17 2014, after Alois P. Heinz *)
a[n_] := a[n] = If[n <= 1, n, Sum[a[n - j] DivisorSum[j, # a[#] &], {j, n - 1}]/(n - 1)]; Table[a[n], {n, 0, 30}] (* Jan Mangaldan, May 07 2014, after Alois P. Heinz *)
(* first do *) << NumericalDifferentialEquationAnalysis`; (* then *)
ButcherTreeCount[30] (* v8 onward Robert G. Wilson v, Sep 16 2014 *)
a[n:0|1] := n; a[n_] := a[n] = Sum[m a[m] a[n-k*m], {m, n-1}, {k, (n-1)/m}]/(n-1); Table[a[n], {n, 0, 30}] (* Vladimir Reshetnikov, Nov 06 2015 *)
terms = 31; A[_] = 0; Do[A[x_] = x*Exp[Sum[A[x^k]/k, {k, 1, j}]] + O[x]^j // Normal, {j, 1, terms}]; CoefficientList[A[x], x] (* Jean-François Alcover, Jan 11 2018 *)
PROG
(PARI) {a(n) = local(A = x); if( n<1, 0, for( k=1, n-1, A /= (1 - x^k + x * O(x^n))^polcoeff(A, k)); polcoeff(A, n))}; /* Michael Somos, Dec 16 2002 */
(PARI) {a(n) = local(A, A1, an, i); if( n<1, 0, an = Vec(A = A1 = 1 + O(x^n)); for( m=2, n, i=m\2; an[m] = sum( k=1, i, an[k] * an[m-k]) + polcoeff( if( m%2, A *= (A1 - x^i)^-an[i], A), m-1)); an[n])}; /* Michael Somos, Sep 05 2003 */
(PARI) N=66; A=vector(N+1, j, 1);
for (n=1, N, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d*A[d]) * A[n-k+1] ) );
concat([0], A) \\ Joerg Arndt, Apr 17 2014
(Magma) N := 30; P<x> := PowerSeriesRing(Rationals(), N+1); f := func< A | x*&*[Exp(Evaluate(A, x^k)/k) : k in [1..N]]>; G := x; for i in [1..N] do G := f(G); end for; G000081 := G; A000081 := [0] cat Eltseq(G); // Geoff Bailey (geoff(AT)maths.usyd.edu.au), Nov 30 2009
(Maxima)
g(m):= block([si, v], s:0, v:divisors(m), for si in v do (s:s+r(m/si)/si), s);
r(n):=if n=1 then 1 else sum(Co(n-1, k)/k!, k, 1, n-1);
Co(n, k):=if k=1 then g(n) else sum(g(i+1)*Co(n-i-1, k-1), i, 0, n-k);
makelist(r(n), n, 1, 12); /*Vladimir Kruchinin, Jun 15 2012 */
(Haskell)
import Data.List (genericIndex)
a000081 = genericIndex a000081_list
a000081_list = 0 : 1 : f 1 [1, 0] where
f x ys = y : f (x + 1) (y : ys) where
y = sum (zipWith (*) (map h [1..x]) ys) `div` x
h = sum . map (\d -> d * a000081 d) . a027750_row
-- Reinhard Zumkeller, Jun 17 2013
(Sage)
@CachedFunction
def a(n):
if n < 2: return n
return add(add(d*a(d) for d in divisors(j))*a(n-j) for j in (1..n-1))/(n-1)
[a(n) for n in range(31)] # Peter Luschny, Jul 18 2014 after Alois P. Heinz
(Sage) [0]+[RootedTrees(n).cardinality() for n in range(1, 31)] # Freddy Barrera, Apr 07 2019
(Python)
from functools import lru_cache
from sympy import divisors
@lru_cache(maxsize=None)
def divisor_tuple(n): # cached unordered tuple of divisors
return tuple(divisors(n, generator=True))
@lru_cache(maxsize=None)
def A000081(n): return n if n <= 1 else sum(sum(d*A000081(d) for d in divisor_tuple(k))*A000081(n-k) for k in range(1, n))//(n-1) # Chai Wah Wu, Jan 14 2022
CROSSREFS
Cf. A000041 (partitions), A000055 (unrooted trees), A000169, A001858, A005200, A027750, A051491, A051492, A093637, A187770, A199812, A255170, A087803 (partial sums).
Row sums of A144963. - Gary W. Adamson, Sep 27 2008
Cf. A209397 (log(A(x)/x)).
Cf. A000106 (self-convolution).
Column k=1 of A033185 and A034799; column k=0 of A008295.
KEYWORD
nonn,easy,core,nice,eigen
AUTHOR
STATUS
approved
A000124 Central polygonal numbers (the Lazy Caterer's sequence): n(n+1)/2 + 1; or, maximal number of pieces formed when slicing a pancake with n cuts.
(Formerly M1041 N0391)
+10
425
1, 2, 4, 7, 11, 16, 22, 29, 37, 46, 56, 67, 79, 92, 106, 121, 137, 154, 172, 191, 211, 232, 254, 277, 301, 326, 352, 379, 407, 436, 466, 497, 529, 562, 596, 631, 667, 704, 742, 781, 821, 862, 904, 947, 991, 1036, 1082, 1129, 1177, 1226, 1276, 1327, 1379 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
These are Hogben's central polygonal numbers with the (two-dimensional) symbol
2
.P
1 n
The first line cuts the pancake into 2 pieces. For n > 1, the n-th line crosses every earlier line (avoids parallelism) and also avoids every previous line intersection, thus increasing the number of pieces by n. For 16 lines, for example, the number of pieces is 2 + 2 + 3 + 4 + 5 + ... + 16 = 137. These are the triangular numbers plus 1 (cf. A000217).
m = (n-1)(n-2)/2 + 1 is also the smallest number of edges such that all graphs with n nodes and m edges are connected. - _Keith Briggs_, May 14 2004
Also maximal number of grandchildren of a binary vector of length n+2. E.g., a binary vector of length 6 can produce at most 11 different vectors when 2 bits are deleted.
This is also the order dimension of the (strong) Bruhat order on the finite Coxeter group B_{n+1}. - Nathan Reading (reading(AT)math.umn.edu), Mar 07 2002
Number of 132- and 321-avoiding permutations of {1,2,...,n+1}. - Emeric Deutsch, Mar 14 2002
For n >= 1 a(n) is the number of terms in the expansion of (x+y)*(x^2+y^2)*(x^3+y^3)*...*(x^n+y^n). - Yuval Dekel (dekelyuval(AT)hotmail.com), Jul 28 2003
Also the number of terms in (1)(x+1)(x^2+x+1)...(x^n+...+x+1); see A000140.
Narayana transform (analog of the binomial transform) of vector [1, 1, 0, 0, 0, ...] = A000124; using the infinite lower Narayana triangle of A001263 (as a matrix), N; then N * [1, 1, 0, 0, 0, ...] = A000124. - Gary W. Adamson, Apr 28 2005
Number of interval subsets of {1, 2, 3, ..., n} (cf. A002662). - Jose Luis Arregui (arregui(AT)unizar.es), Jun 27 2006
Define a number of straight lines in the plane to be in general arrangement when (1) no two lines are parallel, (2) there is no point common to three lines. Then these are the maximal numbers of regions defined by n straight lines in general arrangement in the plane. - Peter C. Heinig (algorithms(AT)gmx.de), Oct 19 2006
Note that a(n) = a(n-1) + A000027(n-1). This has the following geometrical interpretation: Suppose there are already n-1 lines in general arrangement, thus defining the maximal number of regions in the plane obtainable by n-1 lines and now one more line is added in general arrangement. Then it will cut each of the n-1 lines and acquire intersection points which are in general arrangement. (See the comments on A000027 for general arrangement with points.) These points on the new line define the maximal number of regions in 1-space definable by n-1 points, hence this is A000027(n-1), where for A000027 an offset of 0 is assumed, that is, A000027(n-1) = (n+1)-1 = n. Each of these regions acts as a dividing wall, thereby creating as many new regions in addition to the a(n-1) regions already there, hence a(n) = a(n-1) + A000027(n-1). Cf. the comments on A000125 for an analogous interpretation. - Peter C. Heinig (algorithms(AT)gmx.de), Oct 19 2006
When constructing a zonohedron, one zone at a time, out of (up to) 3-d non-intersecting parallelepipeds, the n-th element of this sequence is the number of edges in the n-th zone added with the n-th "layer" of parallelepipeds. (Verified up to 10-zone zonohedron, the enneacontahedron.) E.g., adding the 10th zone to the enneacontahedron requires 46 parallel edges (edges in the 10th zone) by looking directly at a 5-valence vertex and counting visible vertices. - Shel Kaphan, Feb 16 2006
Binomial transform of (1, 1, 1, 0, 0, 0, ...) and inverse binomial transform of A072863: (1, 3, 9, 26, 72, 192, ...). - Gary W. Adamson, Oct 15 2007
If Y is a 2-subset of an n-set X then, for n >= 3, a(n-3) is the number of (n-2)-subsets of X which do not have exactly one element in common with Y. - Milan Janjic, Dec 28 2007
Equals row sums of triangle A144328. - Gary W. Adamson, Sep 18 2008
It appears that a(n) is the number of distinct values among the fractions F(i+1)/F(j+1) as j ranges from 1 to n and, for each fixed j, i ranges from 1 to j, where F(i) denotes the i-th Fibonacci number. - John W. Layman, Dec 02 2008
a(n) is the number of subsets of {1,2,...,n} that contain at most two elements. - Geoffrey Critzer, Mar 10 2009
For n >= 2, a(n) gives the number of sets of subsets A_1, A_2, ..., A_n of n = {1, 2, ..., n} such that Meet_{i = 1..n} A_i is empty and Sum_{j in [n]} (|Meet{i = 1..n, i != j} A_i|) is a maximum. - Srikanth K S, Oct 22 2009
The numbers along the left edge of Floyd's triangle. - Paul Muljadi, Jan 25 2010
Let A be the Hessenberg matrix of order n, defined by: A[1,j] = A[i,i]:=1, A[i,i-1] = -1, and A[i,j] = 0 otherwise. Then, for n >= 1, a(n-1) = (-1)^(n-1)*coeff(charpoly(A,x),x). - Milan Janjic, Jan 24 2010
Also the number of deck entries of Euler's ship. See the Meijer-Nepveu link. - Johannes W. Meijer, Jun 21 2010
(1 + x^2 + x^3 + x^4 + x^5 + ...)*(1 + 2x + 3x^2 + 4x^3 + 5x^4 + ...) = (1 + 2x + 4x^2 + 7x^3 + 11x^4 + ...). - Gary W. Adamson, Jul 27 2010
The number of length n binary words that have no 0-digits between any pair of consecutive 1-digits. - Jeffrey Liese, Dec 23 2010
Let b(0) = b(1) = 1; b(n) = max(b(n-1)+n-1, b(n-2)+n-2) then a(n) = b(n+1). - Yalcin Aktar, Jul 28 2011
Also number of triangular numbers so far, for n > 0: a(n) = a(n-1) + Sum(A010054(a(k)): 0 <= k < n), see also A097602, A131073. - Reinhard Zumkeller, Nov 15 2012
Also number of distinct sums of 1 through n where each of those can be + or -. E.g., {1+2,1-2,-1+2,-1-2} = {3,-1,1,-3} and a(2) = 4. - Toby Gottfried, Nov 17 2011
This sequence is complete because the sum of the first n terms is always greater than or equal to a(n+1)-1. Consequently, any nonnegative number can be written as a sum of distinct terms of this sequence. See A204009, A072638. - Frank M Jackson, Jan 09 2012
The sequence is the number of distinct sums of subsets of the nonnegative integers, and its first differences are the positive integers. See A208531 for similar results for the squares. - John W. Layman, Feb 28 2012
Apparently the number of Dyck paths of semilength n+1 in which the sum of the first and second ascents add to n+1. - David Scambler, Apr 22 2013
Without 1 and 2, a(n) equals the terminus of the n-th partial sum of sequence 1, 1, 2. Explanation: 1st partial sums of 1, 1, 2 are 1, 2, 4; 2nd partial sums are 1, 3, 7; 3rd partial sums are 1, 4, 11; 4th partial sums are 1, 5, 16, etc. - Bob Selcoe, Jul 04 2013
Equivalently, numbers of the form 2*m^2+m+1, where m = 0, -1, 1, -2, 2, -3, 3, ... . - Bruno Berselli, Apr 08 2014
For n >= 2: quasi-triangular numbers; the almost-triangular numbers being A000096(n), n >= 2. Note that 2 is simultaneously almost-triangular and quasi-triangular. - Daniel Forgues, Apr 21 2015
n points in general position determine "n choose 2" lines, so A055503(n) <= a(n(n-1)/2). If n > 3, the lines are not in general position and so A055503(n) < a(n(n-1)/2). - Jonathan Sondow, Dec 01 2015
The digital root is period 9 (1, 2, 4, 7, 2, 7, 4, 2, 1), also the digital roots of centered 10-gonal numbers (A062786), for n > 0, A133292. - Peter M. Chema, Sep 15 2016
Partial sums of A028310. - J. Conrad, Oct 31 2016
For n >= 0, a(n) is the number of weakly unimodal sequences of length n over the alphabet {1, 2}. - Armend Shabani, Mar 10 2017
From Eric M. Schmidt, Jul 17 2017: (Start)
Number of sequences (e(1), ..., e(n+1)), 0 <= e(i) < i, such that there is no triple i < j < k with e(i) < e(j) != e(k). [Martinez and Savage, 2.4]
Number of sequences (e(1), ..., e(n+1)), 0 <= e(i) < i, such that there is no triple i < j < k with e(i) < e(j) and e(i) < e(k). [Martinez and Savage, 2.4]
Number of sequences (e(1), ..., e(n+1)), 0 <= e(i) < i, such that there is no triple i < j < k with e(i) >= e(j) != e(k). [Martinez and Savage, 2.4]
(End)
Numbers m such that 8m - 7 is a square. - Bruce J. Nicholson, Jul 24 2017
From Klaus Purath, Jan 29 2020: (Start)
The odd prime factors != 7 occur in an interval of p successive terms either never or exactly twice, while 7 always occurs only once. If a prime factor p appears in a(n) and a(m) within such an interval, then n + m == -1 (mod p). When 7 divides a(n), then 2*n == -1 (mod 7). a(n) is never divisible by the prime numbers given in A003625.
While all prime factors p != 7 can occur to any power, a(n) is never divisible by 7^2. The prime factors are given in A045373. The prime terms of this sequence are given in A055469.
(End)
From Roger Ford, May 10 2021: (Start)
a(n-1) is the greatest sum of arch lengths for the top arches of a semi-meander with n arches. An arch length is the number of arches covered + 1.
/\ The top arch has a length of 3. /\ The top arch has a length of 3.
/ \ Both bottom arches have a //\\ The middle arch has a length of 2.
//\/\\ length of 1. ///\\\ The bottom arch has a length of 1.
Example: for n = 4, a(4-1) = a(3) = 7 /\
//\\
/\ ///\\\ 1 + 3 + 2 + 1 = 7. (End)
a(n+1) is the a(n)-th smallest positive integer that has not yet appeared in the sequence. - Matthew Malone, Aug 26 2021
For n> 0, let the n-dimensional cube {0,1}^n be, provided with the Hamming distance, d. Given an element x in {0,1}^n, a(n) is the number of elements y in {0,1}^n such that d(x, y) <= 2. Example: n = 4. (0,0,0,0), (1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1), (0,0,1,1), (0,1,0,1), (0,1,1,0), (1,0,0,1), (1,0,1,0), (1,1,0,0) are at distance <= 2 from (0,0,0,0), so a(4) = 11. - Yosu Yurramendi, Dec 10 2021
a(n) is the sum of the first three entries of row n of Pascal's triangle. - Daniel T. Martin, Apr 13 2022
a(n-1) is the number of Grassmannian permutations that avoid a pattern, sigma, where sigma is a pattern of size 3 with exactly one descent. For example, sigma is one of the patterns, {132, 213, 231, 312}. - Jessica A. Tomasko, Sep 14 2022
REFERENCES
Robert B. Banks, Slicing Pizzas, Racing Turtles and Further Adventures in Applied Mathematics, Princeton Univ. Press, 1999. See p. 24.
Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 72, Problem 2.
Henry Ernest Dudeney, Amusements in Mathematics, Nelson, London, 1917, page 177.
Derrick Niederman, Number Freak, From 1 to 200 The Hidden Language of Numbers Revealed, A Perigee Book, NY, 2009, p. 83.
Michel Rigo, Formal Languages, Automata and Numeration Systems, 2 vols., Wiley, 2014. Mentions this sequence - see "List of Sequences" in Vol. 2.
Alain M. Robert, A Course in p-adic Analysis, Springer-Verlag, 2000; p. 213.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane, On single-deletion-correcting codes, in Codes and Designs (Columbus, OH, 2000), 273-291, Ohio State Univ. Math. Res. Inst. Publ., 10, de Gruyter, Berlin, 2002.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
William Allen Whitworth, DCC Exercises in Choice and Chance, Stechert, NY, 1945, p. 30.
Akiva M. Yaglom and Isaak M. Yaglom, Challenging Mathematical Problems with Elementary Solutions. Vol. I. Combinatorial Analysis and Probability Theory. New York: Dover Publications, Inc., 1987, p. 13, #44 (First published: San Francisco: Holden-Day, Inc., 1964).
LINKS
David Applegate and N. J. A. Sloane, The Gift Exchange Problem, arXiv:0907.0513 [math.CO], 2009.
Jean-Luc Baril, Classical sequences revisited with permutations avoiding dotted pattern, Electronic Journal of Combinatorics, 18 (2011), #P178.
Jean-Luc Baril and Céline Moreira Dos Santos, Pizza-cutter's problem and Hamiltonian path, Mathematics Magazine (2019) Vol. 88, No. 1, 1-9.
Jean-Luc Baril, Sergey Kirgizov and Vincent Vajnovszki, Descent distribution on Catalan words avoiding a pattern of length at most three, arXiv:1803.06706 [math.CO], 2018.
Jean-Luc Baril, Toufik Mansour and Armen Petrossian, Equivalence classes of permutations modulo excedances, preprint, Journal of Combinatorics, Volume 5 (2014) Number 4.
Jean-Luc Baril and Armen Petrossian, Equivalence classes of permutations modulo descents and left-to-right maxima, preprint, Pure Mathematics and Applications, Volume 25, Issue 1 (Sep 2015).
Andrew M. Baxter and Lara K. Pudwell, Ascent sequences avoiding pairs of patterns, preprint, The Electronic Journal of Combinatorics, Volume 22, Issue 1 (2015) Paper #P1.58.
Christian Bean, Anders Claesson and Henning Ulfarsson, Simultaneous Avoidance of a Vincular and a Covincular Pattern of Length 3, arXiv preprint arXiv:1512.03226 [math.CO], 2017.
Alexander Burstein and Toufik Mansour, Words restricted by 3-letter generalized multipermutation patterns, arXiv:math/0112281 [math.CO], 2001.
Alexander Burstein and Toufik Mansour, Words restricted by 3-letter generalized multipermutation patterns, Annals. Combin., 7 (2003), 1-14.
David Coles, Triangle Puzzle.
M. L. Cornelius, Variations on a geometric progression, Mathematics in School, 4 (No. 3, May 1975), p. 32. (Annotated scanned copy)
Tom Crawford, 22 Slices of Pizza with Six Cuts, Tom Rocks Maths video (2022)
Robert Dawson, On Some Sequences Related to Sums of Powers, J. Int. Seq., Vol. 21 (2018), Article 18.7.6.
Karl Dilcher and Kenneth B. Stolarsky, Nonlinear recurrences related to Chebyshev polynomials, The Ramanujan Journal, 2014, Online Oct. 2014, pp. 1-23. See Cor. 5.
Igor Dolinka, James East and Robert D. Gray, Motzkin monoids and partial Brauer monoids, Journal of Algebra, volume 471, February 2017, pages 251-298. Also preprint arXiv:1512.02279 [math.GR], 2015. See Table 5.
Matthew England, Russell Bradford and James H. Davenport, Cylindrical algebraic decomposition with equational constraints, Journal of Symbolic Computation, Vol. 100 (2020), pp. 38-71; arXiv preprint, arXiv:1903.08999 [cs.SC], 2019.
J. B. Gil and J. Tomasko, Restricted Grassmannian permutations, ECA 2:4 (2022) Article S4PP6.
Sahir Gill, Bounds for Region Containing All Zeros of a Complex Polynomial, International Journal of Mathematical Analysis (2018), Vol. 12, No. 7, 325-333.
Guo-Niu Han, Enumeration of Standard Puzzles [Cached copy]
M. F. Hasler, Interactive illustration of A000124. [Sep 06 2017: The user can choose the slices to make, but the program can suggest a set of n slices which should yield the maximum number of pieces. For n slices this obviously requires 2n endpoints, or 2n+1 if they are equally spaced, so if there are not enough "blobs", their number is accordingly increased. This is the distinction between "draw" (done when you change the slices or number of blobs by hand) and "suggest" (propose a new set of slices).]
Phillip Tomas Heikoop, Dimensions of Matrix Subalgebras, Bachelor's Thesis, Worcester Polytechnic Institute, Massachusetts, 2019.
Cheyne Homberger, Patterns in Permutations and Involutions: A Structural and Enumerative Approach, arXiv preprint 1410.2657 [math.CO], 2014.
Cheyne Homberger and Vincent Vatter, On the effective and automatic enumeration of polynomial permutation classes, Journal of Symbolic Computation, Vol. 76 (2016), pp. 84-96; arXiv preprint, arXiv:1308.4946 [math.CO], 2013-2015.
Lancelot Hogben, Choice and Chance by Cardpack and Chessboard, Vol. 1, Max Parrish and Co, London, 1950, p. 22.
Milan Janjic, Hessenberg Matrices and Integer Sequences , J. Int. Seq. 13 (2010) # 10.7.8.
Myrto Kallipoliti, Robin Sulzgruber, and Eleni Tzanaki, Patterns in Shi tableaux and Dyck paths, arXiv:2006.06949 [math.CO], 2020.
Clark Kimberling, Complementary Equations, Journal of Integer Sequences, Vol. 10 (2007), Article 07.1.4.
Clark Kimberling and John E. Brown, Partial Complements and Transposable Dispersions, J. Integer Seqs., Vol. 7, 2004.
Thomas Langley, Jeffrey Liese, and Jeffrey Remmel, Generating Functions for Wilf Equivalence Under Generalized Factor Order, J. Int. Seq. 14 (2011) # 11.4.2.
Kyu-Hwan Lee and Se-jin Oh, Catalan triangle numbers and binomial coefficients, arXiv:1601.06685 [math.CO], 2016-2017.
Derek Levin, Lara Pudwell, Manda Riehl and Andrew Sandberg, Pattern Avoidance on k-ary Heaps, Slides of Talk, 2014.
D. A. Lind, On a class of nonlinear binomial sums, Fib. Quart., 3 (1965), 292-298.
Toufik Mansour, Permutations avoiding a set of patterns from S_3 and a pattern from S_4, arXiv:math/9909019 [math.CO], 1999.
Megan A. Martinez and Carla D. Savage, Patterns in Inversion Sequences II: Inversion Sequences Avoiding Triples of Relations, arXiv:1609.08106 [math.CO], 2016-2018.
Johannes W. Meijer and Manuel Nepveu, Euler's ship on the Pentagonal Sea, Acta Nova, Volume 4, No.1, December 2008. pp. 176-187.
Markus Moll, On a family of random noble means substitutions, Dr. Math. Dissertation, Universität Bielefeld, 2013, arXiv:1312.5136 [math.DS], 2013.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
Derek J. Price, Some unusual series occurring in n-dimensional geometry, Math. Gaz., Vol. 30, No. 290 (1946), pp. 149-150.
Lara Pudwell and Andrew Baxter, Ascent sequences avoiding pairs of patterns, 2014.
Franck Ramaharo, Enumerating the states of the twist knot, arXiv:1712.06543 [math.CO], 2017.
Franck Ramaharo and Fanja Rakotondrajao, A state enumeration of the foil knot, arXiv:1712.04026 [math.CO], 2017.
Franck Ramaharo, A generating polynomial for the two-bridge knot with Conway's notation C(n,r), arXiv:1902.08989 [math.CO], 2019.
Nathan Reading, On the structure of Bruhat Order, Ph.D. dissertation, University of Minnesota, April 2002.
Nathan Reading, Order Dimension, Strong Bruhat Order and Lattice Properties for Posets, Order, Vol. 19, no. 1 (2002), 73-100.
Rodica Simion and Frank W. Schmidt, Restricted permutations, European J. Combin., 6, 383-406, 1985; see Example 3.5.
N. J. A. Sloane, On single-deletion-correcting codes, 2002.
N. J. A. Sloane, "A Handbook of Integer Sequences" Fifty Years Later, arXiv:2301.03149 [math.NT], 2023, p. 1.
Andrew James Turner and Julian Francis Miller, Recurrent Cartesian Genetic Programming Applied to Famous Mathematical Sequences, 2014.
Eric Weisstein's World of Mathematics, Circle Division by Lines.
Eric Weisstein's World of Mathematics, Plane Division by Lines.
Thomas Wieder, The number of certain k-combinations of an n-set, Applied Mathematics Electronic Notes, Vol. 8 (2008), pp. 45-52.
Wikipedia, Floyd's triangle.
FORMULA
G.f.: (1 - x + x^2)/(1 - x)^3. Simon Plouffe in his 1992 dissertation
a(n) = A108561(n+3, 2). - Reinhard Zumkeller, Jun 10 2005
G.f.: (1 - x^6)/((1 - x)^2*(1 - x^2)*(1 - x^3)). a(n) = a(-1 - n) for all n in Z. - Michael Somos, Sep 04 2006
Euler transform of length 6 sequence [ 2, 1, 1, 0, 0, -1]. - Michael Somos, Sep 04 2006
a(n+3) = 3*a(n+2) - 3*a(n+1) + a(n) and a(1) = 1, a(2) = 2, a(3) = 4. - Artur Jasinski, Oct 21 2008
a(n) = A000217(n) + 1.
a(n) = a(n-1) + n. E.g.f.:(1 + x + x^2/2)*exp(x). - Geoffrey Critzer, Mar 10 2009
a(n) = Sum_{k = 0..n + 1} binomial(n+1, 2(k - n)). - Paul Barry, Aug 29 2004
a(n) = binomial(n+2, 1) - 2*binomial(n+1, 1) + binomial(n+2, 2). - Zerinvary Lajos, May 12 2006
From Thomas Wieder, Feb 25 2009: (Start)
a(n) = Sum_{l_1 = 0..n + 1} Sum_{l_2 = 0..n}...Sum_{l_i = 0..n - i}...Sum_{l_n = 0..1} delta(l_1, l_2, ..., l_i, ..., l_n) where delta(l_1, l_2, ..., l_i, ..., l_n) = 0 if any l_i != l_(i+1) and l_(i+1) != 0 and delta(l_1, l_2, ..., l_i, ..., l_n) = 1 otherwise. (End)
a(n) = A034856(n+1) - A005843(n) = A000217(n) + A005408(n) - A005843(n). - Jaroslav Krizek, Sep 05 2009
a(n) = 2*a(n-1) - a(n-2) + 1. - Eric Werley, Jun 27 2011
E.g.f.: exp(x)*(1+x+(x^2)/2) = Q(0); Q(k) = 1+x/(1-x/(2+x-4/(2+x*(k+1)/Q(k+1)))); (continued fraction). - Sergei N. Gladkovskii, Nov 21 2011
a(n) = A014132(n, 1) for n > 0. - Reinhard Zumkeller, Dec 12 2012
a(n) = 1 + floor(n/2) + ceiling(n^2/2) = 1 + A004526(n) + A000982(n). - Wesley Ivan Hurt, Jun 14 2013
a(n) = A228074(n+1, n). - Reinhard Zumkeller, Aug 15 2013
For n > 0: A228446(a(n)) = 3. - Reinhard Zumkeller, Mar 12 2014
a(n) >= A263883(n) and a(n(n-1)/2) >= A055503(n). - Jonathan Sondow, Dec 01 2015
From Ilya Gutkovskiy, Jun 29 2016: (Start)
Dirichlet g.f.: (zeta(s-2) + zeta(s-1) + 2*zeta(s))/2.
Sum_{n >= 0} 1/a(n) = 2*Pi*tanh(sqrt(7)*Pi/2)/sqrt(7) = A226985. (End)
a(n) = (n+1)^2 - A000096(n). - Anton Zakharov, Jun 29 2016
a(n) = A101321(1, n). - R. J. Mathar, Jul 28 2016
a(n) = 2*a(n-1) - binomial(n-1, 2) and a(0) = 1. - Armend Shabani, Mar 10 2017
a(n) = A002620(n+2) + A002620(n-1). - Anton Zakharov, May 11 2017
From Klaus Purath, Jan 29 2020: (Start)
a(n) = (Sum_{i=n-2..n+2} A000217(i))/5.
a(n) = (Sum_{i=n-2..n+2} A002378(i))/10.
a(n) = (Sum_{i=n..n+2} A002061(i)+1)/6.
a(n) = (Sum_{i=n-1..n+2} A000290(i)+2)/8.
a(n) = A060533(n-1) + 10, n > 5.
a(n) = (A002378(n) + 2)/2.
a(n) = A152948(n+2) - 1.
a(n) = A152950(n+1) - 2.
a(n) = (A002061(n) + A002061(n+2))/4.
(End)
Sum_{n>=0} (-1)^n/a(n) = A228918. - Amiram Eldar, Nov 20 2020
From Amiram Eldar, Feb 17 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = cosh(sqrt(15)*Pi/2)*sech(sqrt(7)*Pi/2).
Product_{n>=1} (1 - 1/a(n)) = 2*Pi*sech(sqrt(7)*Pi/2). (End)
a((n^2-3n+6)/2) + a((n^2-n+4)/2) = a(n^2-2n+6)/2. - Charlie Marion, Feb 14 2023
EXAMPLE
a(3) = 7 because the 132- and 321-avoiding permutations of {1, 2, 3, 4} are 1234, 2134, 3124, 2314, 4123, 3412, 2341.
G.f. = 1 + 2*x + 4*x^2 + 7*x^3 + 11*x^4 + 16*x^5 + 22*x^6 + 29*x^7 + ...
MAPLE
A000124 := n-> n*(n+1)/2+1;
MATHEMATICA
FoldList[#1 + #2 &, 1, Range@ 50] (* Robert G. Wilson v, Feb 02 2011 *)
Accumulate[Range[0, 60]] + 1 (* Harvey P. Dale, Mar 12 2013 *)
Select[Range[2000], IntegerQ[Sqrt[8 # - 7]] &] (* Vincenzo Librandi, Apr 16 2014 *)
Table[PolygonalNumber[n] + 1, {n, 0, 52}] (* Michael De Vlieger, Jun 30 2016, Version 10.4 *)
LinearRecurrence[{3, -3, 1}, {1, 2, 4}, 53] (* Jean-François Alcover, Sep 23 2017 *)
PROG
(PARI) {a(n) = (n^2 + n) / 2 + 1}; /* Michael Somos, Sep 04 2006 */
(Haskell)
a000124 = (+ 1) . a000217
-- Reinhard Zumkeller, Oct 04 2012, Nov 15 2011
(Magma) [n: n in [0..1500] | IsSquare(8*n-7)]; // Vincenzo Librandi, Apr 16 2014
(GAP) List([0..60], n->n*(n+1)/2+1); # Muniru A Asiru, Apr 11 2018
(Scala) (1 to 52).scanLeft(1)(_ + _) // Alonso del Arte, Feb 24 2019
(Python)
def a(n): return n*(n+1)//2 + 1
print([a(n) for n in range(53)]) # Michael S. Branicky, Aug 26 2021
CROSSREFS
Cf. A000096 (Maximal number of pieces that can be obtained by cutting an annulus with n cuts, for n >= 1).
Slicing a cake: A000125, a bagel: A003600.
Partial sums =(A033547)/2, (A014206)/2.
The first 20 terms are also found in A025732 and A025739.
Cf. A055469 Quasi-triangular primes.
Cf. A002620.
Cf. A000217.
KEYWORD
nonn,core,easy,nice
AUTHOR
STATUS
approved
A000959 Lucky numbers.
(Formerly M2616 N1035)
+10
304
1, 3, 7, 9, 13, 15, 21, 25, 31, 33, 37, 43, 49, 51, 63, 67, 69, 73, 75, 79, 87, 93, 99, 105, 111, 115, 127, 129, 133, 135, 141, 151, 159, 163, 169, 171, 189, 193, 195, 201, 205, 211, 219, 223, 231, 235, 237, 241, 259, 261, 267, 273, 283, 285, 289, 297, 303 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
An interesting general discussion of the phenomenon of 'random primes' (generalizing the lucky numbers) occurs in Hawkins (1958). Heyde (1978) proves that Hawkins' random primes do not only almost always satisfy the Prime Number Theorem but also the Riemann Hypothesis. - Alf van der Poorten, Jun 27 2002
Bui and Keating establish an asymptotic formula for the number of k-difference twin primes, and more generally to all l-tuples, of Hawkins primes, a probabilistic model of the Eratosthenes sieve. The formula for k = 1 was obtained by Wunderlich [Acta Arith. 26 (1974), 59 - 81]. - Jonathan Vos Post, Mar 24 2009. (This is quoted from the abstract of the Bui-Keating (2006) article, Joerg Arndt, Jan 04 2014)
It appears that a 1's line is formed, as in the Gilbreath's conjecture, if we use 2 (or 4), 3, 5 (differ of 7), 9, 13, 15, 21, 25, ... instead of A000959 1, 3, 7, 9, 13, 15, 21, 25, ... - Eric Desbiaux, Mar 25 2010
REFERENCES
Martin Gardner, Gardner's Workout, Chapter 21 "Lucky Numbers and 2187" pp. 149-156 A. K. Peters MA 2002.
Richard K. Guy, Unsolved Problems in Number Theory, C3.
C. S. Ogilvy, Tomorrow's Math. 2nd ed., Oxford Univ. Press, 1972, p. 99.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
M. L. Stein and P. R. Stein, Tables of the Number of Binary Decompositions of All Even Numbers Less Than 200,000 into Prime Numbers and Lucky Numbers. Report LA-3106, Los Alamos Scientific Laboratory of the University of California, Los Alamos, NM, Sep 1964.
David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, 114.
LINKS
Hugo van der Sanden, Table of n, a(n) for n = 1..200000 (terms 1..10000 from T. D. Noe, terms 10001..30981 from R. J. Mathar)
H. M. Bui and J. P. Keating, On twin primes associated with the Hawkins random sieve, J. Number Theory 119(2) (2006), 284-296.
H. M. Bui and J. P. Keating, On twin primes associated with the Hawkins random sieve, arXiv:math/0607196 [math.NT], 2006-2010.
Vema Gardiner, R. Lazarus, N. Metropolis, and S. Ulam, On certain sequences of integers defined by sieves, Math. Mag., 29 (1956), 117-122. doi:10.2307/3029719; Zbl 0071.27002.
Martin Gardner, Lucky numbers and 2187, Math. Intellig., 19(2) (1997), 26-29.
David Hawkins, The random sieve, Math. Mag. 31 (1958), 1-3.
D. Hawkins and W. E. Briggs, The lucky number theorem, Math. Mag. 31 (1958), 81-84.
C. C. Heyde, A Log Log Improvement to the Riemann Hypothesis for the Hawkins Random Sieve, Ann. Probability, 6 (1978), 850-875.
Ivars Peterson and MathTrek, Martin Gardner's Lucky Numbers (archived on Archive.org).
Ivars Peterson, Martin Gardner's Lucky Numbers (archived on Wikiwix.com)
Popular Computing (Calabasas, CA), Sieves: Problem 43, Vol. 2 (No. 13, Apr 1974), pp. 6-7. This is Sieve #7. [Annotated and scanned copy]
Walter Schneider, Lucky Numbers.
Hugo van der Sanden, Lucky numbers up to 1e8. [Broken link]
G. Villemin's Almanach of Numbers, Nombre Chanceux.
Eric Weisstein's World of Mathematics, Lucky number.
Wikipedia, Lucky number.
FORMULA
Start with the natural numbers. Delete every 2nd number, leaving 1 3 5 7 ...; the 2nd number remaining is 3, so delete every 3rd number, leaving 1 3 7 9 13 15 ...; now delete every 7th number, leaving 1 3 7 9 13 ...; now delete every 9th number; etc.
a(n) = A254967(n-1, n-1). - Reinhard Zumkeller, Feb 11 2015
a(n) = A258207(n,n). [Where A258207 is a square array constructed from the numbers remaining after each step described above.] - Antti Karttunen, Aug 06 2015
A145649(a(n)) = 1; complement of A050505. - Reinhard Zumkeller, Oct 15 2008
Other identities from Antti Karttunen, Feb 26 2015: (Start)
For all n >= 1, A109497(a(n)) = n.
For all n >= 1, a(n) = A000040(n) + A032600(n).
For all n >= 2, a(n) = A255553(A000040(n)).
(End)
MAPLE
## luckynumbers(n) returns all lucky numbers from 1 to n. ## Try n=10^5 just for fun. luckynumbers:=proc(n) local k, Lnext, Lprev; Lprev:=[$1..n]; for k from 1 do if k=1 or k=2 then Lnext:= map(w-> Lprev[w], remove(z -> z mod Lprev[2] = 0, [$1..nops(Lprev)])); if nops(Lnext)=nops(Lprev) then break fi; Lprev:=Lnext; else Lnext:= map(w-> Lprev[w], remove(z -> z mod Lprev[k] = 0, [$1..nops(Lprev)])); if nops(Lnext)=nops(Lprev) then break fi; Lprev:=Lnext; fi; od; return Lnext; end: # Walter Kehowski, Jun 05 2008; typo fixed by Robert Israel, Nov 19 2014
# Alternative
A000959List := proc(mx) local L, n, r;
L:= [seq(2*i+1, i=0..mx)]:
for n from 2 while n < nops(L) do
r:= L[n];
L:= subsop(seq(r*i=NULL, i=1..nops(L)/r), L);
od: L end:
A000959List(10^3); # Robert Israel, Nov 19 2014
MATHEMATICA
luckies = 2*Range@200 - 1; f[n_] := Block[{k = luckies[[n]]}, luckies = Delete[luckies, Table[{k}, {k, k, Length@luckies, k}]]]; Do[f@n, {n, 2, 30}]; luckies (* Robert G. Wilson v, May 09 2006 *)
sieveMax = 10^6; luckies = Range[1, sieveMax, 2]; sieve[n_] := Module[{k = luckies[[n]]}, luckies = Delete[luckies, Table[{i}, {i, k, Length[luckies], k}]]]; n = 1; While[luckies[[n]] < Length[luckies], n++; sieve[n]]; luckies
L = Table[2*i + 1, {i, 0, 10^3}]; For[n = 2, n < Length[L], r = L[[n++]]; L = ReplacePart[L, Table[r*i -> Nothing, {i, 1, Length[L]/r}]]]; L (* Jean-François Alcover, Mar 15 2016, after Robert Israel *)
PROG
(Haskell)
a000959 n = a000959_list !! (n-1)
a000959_list = 1 : sieve 2 [1, 3..] where
sieve k xs = z : sieve (k + 1) (lucky xs) where
z = xs !! (k - 1 )
lucky ws = us ++ lucky vs where
(us, _:vs) = splitAt (z - 1) ws
-- Reinhard Zumkeller, Dec 05 2011
(C++) // See Wilson link, Nov 14 2012
(PARI) A000959_upto(nMax)={my(v=vectorsmall(nMax\2, k, 2*k-1), i=1, q); while(v[i++]<=#v, v=vecextract(v, 2^#v-1-(q=1<<v[i])^(#v\v[i])\(q-1)<<(v[i]-1) )); v} \\ M. F. Hasler, Sep 22 2013, improved Jan 20 2020
(Python)
def lucky(n):
L = list(range(1, n + 1, 2))
j = 1
while j <= len(L) - 1 and L[j] <= len(L):
del L[L[j]-1::L[j]]
j += 1
return L
# Robert FERREOL, Nov 19 2014, corrected by F. Chapoton, Mar 29 2020, performance improved by Ely Golden, Aug 18 2022
(Scheme)
(define (A000959 n) ((rowfun_n_for_A000959sieve n) n)) ;; Code for rowfun_n_for_A000959sieve given in A255543.
;; Antti Karttunen, Feb 26 2015
CROSSREFS
Main diagonal of A258207.
Column 1 of A255545. (cf. also arrays A255543, A255551).
Cf. A050505 (complement).
Cf. A145649 (characteristic function).
Cf. A031883 (first differences), A254967 (iterated absolute differences), see also A054978.
Cf. A109497 (works as a left inverse function).
The Gilbreath transform is A054978 - see also A362460, A362461, A362462.
KEYWORD
nonn,easy,nice,core,changed
AUTHOR
N. J. A. Sloane; entry updated Mar 07 2008
STATUS
approved
A000088 Number of graphs on n unlabeled nodes.
(Formerly M1253 N0479)
+10
298
1, 1, 2, 4, 11, 34, 156, 1044, 12346, 274668, 12005168, 1018997864, 165091172592, 50502031367952, 29054155657235488, 31426485969804308768, 64001015704527557894928, 245935864153532932683719776, 1787577725145611700547878190848, 24637809253125004524383007491432768 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Euler transform of the sequence A001349.
Also, number of equivalence classes of sign patterns of totally nonzero symmetric n X n matrices.
REFERENCES
Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 430.
J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 519.
F. Harary, Graph Theory. Addison-Wesley, Reading, MA, 1969, p. 214.
F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 240.
Thomas Boyer-Kassem, Conor Mayo-Wilson, Scientific Collaboration and Collective Knowledge: New Essays, New York, Oxford University Press, 2018, see page 47.
M. Kauers and P. Paule, The Concrete Tetrahedron, Springer 2011, p. 54.
Lupanov, O. B. Asymptotic estimates of the number of graphs with n edges. (Russian) Dokl. Akad. Nauk SSSR 126 1959 498--500. MR0109796 (22 #681).
M. D. McIlroy, Calculation of numbers of structures of relations on finite sets, Massachusetts Institute of Technology, Research Laboratory of Electronics, Quarterly Progress Reports, No. 17, Sep. 15, 1955, pp. 14-22.
R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Keith M. Briggs, Table of n, a(n) for n = 0..87 (From link below)
R. Absil and H. Mélot, Digenes: genetic algorithms to discover conjectures about directed and undirected graphs, arXiv preprint arXiv:1304.7993 [cs.DM], 2013.
Natalie Arkus, Vinothan N. Manoharan and Michael P. Brenner. Deriving Finite Sphere Packings, arXiv:1011.5412 [cond-mat.soft], Nov 24, 2010. (See Table 1.)
Leonid Bedratyuk and Anna Bedratyuk, A new formula for the generating function of the numbers of simple graphs, Comptes rendus de l'Académie Bulgare des Sciences, Tome 69, No 3, 2016, p.259-268.
Benjamin A. Blumer, Michael S. Underwood and David L. Feder, Single-qubit unitary gates by graph scattering, arXiv:1111.5032 [quant-ph], 2011.
Keith M. Briggs, Combinatorial Graph Theory [Gives first 140 terms]
Gunnar Brinkmann, Kris Coolsaet, Jan Goedgebeur and Hadrien Melot, House of Graphs: a database of interesting graphs, arXiv preprint arXiv:1204.3549 [math.CO], 2012.
P. Butler and R. W. Robinson, On the computer calculation of the number of nonseparable graphs, pp. 191 - 208 of Proc. Second Caribbean Conference Combinatorics and Computing (Bridgetown, 1977). Ed. R. C. Read and C. C. Cadogan. University of the West Indies, Cave Hill Campus, Barbados, 1977. vii+223 pp. [Annotated scanned copy]
P. J. Cameron, Some sequences of integers, Discrete Math., 75 (1989), 89-102.
P. J. Cameron, Some sequences of integers, in "Graph Theory and Combinatorics 1988", ed. B. Bollobas, Annals of Discrete Math., 43 (1989), 89-102.
P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
P. J. Cameron and C. R. Johnson, The number of equivalence patterns of symmetric sign patterns, Discr. Math., 306 (2006), 3074-3077.
Gi-Sang Cheon, Jinha Kim, Minki Kim and Sergey Kitaev, On k-11-representable graphs, arXiv:1803.01055 [math.CO], 2018.
CombOS - Combinatorial Object Server, Generate graphs
Karen M. Daehli, Sarah A Obead, Hsuan-Yin Lin, and Eirik Rosnes, Improved Capacity Outer Bound for Private Quadratic Monomial Computation, arXiv:2401.06125 [cs.IR], 2024.
R. L. Davis, The number of structures of finite relations, Proc. Amer. Math. Soc. 4 (1953), 486-495.
J. P. Dolch, Names of Hamiltonian graphs, Proc. 4th S-E Conf. Combin., Graph Theory, Computing, Congress. Numer. 8 (1973), 259-271. (Annotated scanned copy of 3 pages)
Peter Dukes, Notes for Math 422: Enumeration and Ramsey Theory, University of Victoria BC Canada (2019). See page 36.
D. S. Dummit, E. P. Dummit and H. Kisilevsky, Characterizations of quadratic, cubic, and quartic residue matrices, arXiv preprint arXiv:1512.06480 [math.NT], 2015.
Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018.
Mareike Fischer, Michelle Galla, Lina Herbst, Yangjing Long, and Kristina Wicke, Non-binary treebased unrooted phylogenetic networks and their relations to binary and rooted ones, arXiv:1810.06853 [q-bio.PE], 2018.
P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 105.
Harald Fripertinger, Graphs
Scott Garrabrant and Igor Pak, Pattern Avoidance is Not P-Recursive, preprint, 2015.
Lee M. Gunderson and Gecia Bravo-Hermsdorff, Introducing Graph Cumulants: What is the Variance of Your Social Network?, arXiv:2002.03959 [math.ST], 2020.
P. Hegarty, On the notion of balance in social network analysis, arXiv preprint arXiv:1212.4303 [cs.SI], 2012.
S. Hougardy, Home Page
S. Hougardy, Classes of perfect graphs, Discr. Math. 306 (2006), 2529-2571.
Richard Hua and Michael J. Dinneen, Improved QUBO Formulation of the Graph Isomorphism Problem, SN Computer Science (2020) Vol. 1, No. 19.
A. Itzhakov and M. Codish, Breaking Symmetries in Graph Search with Canonizing Sets, arXiv preprint arXiv:1511.08205 [cs.AI], 2015-2016.
Dan-Marian Joiţa and Lorentz Jäntschi, Extending the Characteristic Polynomial for Characterization of C_20 Fullerene Congeners, Mathematics (2017), 5(4), 84.
Maksim Karev, The space of framed chord diagrams as a Hopf module, arXiv preprint arXiv:1404.0026 [math.GT], 2014.
Steffen Lauritzen, Alessandro Rinaldo and Kayvan Sadeghi, On Exchangeability in Network Models, arXiv:1709.03885 [math.ST], 2017.
O. B. Lupanov, On asymptotic estimates of the number of graphs and networks with n edges, Problems of Cybernetics [in Russian], Moscow 4 (1960): 5-21.
M. D. McIlroy, Calculation of numbers of structures of relations on finite sets, Massachusetts Institute of Technology, Research Laboratory of Electronics, Quarterly Progress Reports, No. 17, Sep. 15, 1955, pp. 14-22. [Annotated scanned copy]
B. D. McKay, Maple program (used to redirect to here).
B. D. McKay, Maple program [Cached copy, with permission]
B. D. McKay, Simple graphs
A. Milicevic and N. Trinajstic, Combinatorial Enumeration in Chemistry, Chem. Modell., Vol. 4, (2006), pp. 405-469.
W. Oberschelp, Kombinatorische Anzahlbestimmungen in Relationen, Math. Ann., 174 (1967), 53-78.
M. Petkovsek and T. Pisanski, Counting disconnected structures: chemical trees, fullerenes, I-graphs and others, Croatica Chem. Acta, 78 (2005), 563-567.
G. Pfeiffer, Counting Transitive Relations, Journal of Integer Sequences, Vol. 7 (2004), Article 04.3.2.
Marko Riedel, Nonisomorphic graphs.
R. W. Robinson, Enumeration of non-separable graphs, J. Combin. Theory 9 (1970), 327-356.
S. S. Skiena, Generating graphs
Quico Spaen, Christopher Thraves Caro and Mark Velednitsky, The Dimension of Valid Distance Drawings of Signed Graphs, Discrete & Computational Geometry (2019), 1-11.
P. R. Stein, On the number of graphical partitions, pp. 671-684 of Proc. 9th S-E Conf. Combinatorics, Graph Theory, Computing, Congr. Numer. 21 (1978). [Annotated scanned copy]
Peter Steinbach, Field Guide to Simple Graphs, Volume 1, Overview of the 17 Parts (For Volumes 1, 2, 3, 4 of this book see A000088, A008406, A000055, A000664, respectively.)
Peter Steinbach, Field Guide to Simple Graphs, Volume 1, Part 10
Peter Steinbach, Field Guide to Simple Graphs, Volume 1, Part 11
Peter Steinbach, Field Guide to Simple Graphs, Volume 1, Part 12
Peter Steinbach, Field Guide to Simple Graphs, Volume 1, Part 13
Peter Steinbach, Field Guide to Simple Graphs, Volume 1, Part 14
Peter Steinbach, Field Guide to Simple Graphs, Volume 1, Part 15
Peter Steinbach, Field Guide to Simple Graphs, Volume 1, Part 16
Peter Steinbach, Field Guide to Simple Graphs, Volume 1, Part 17
J. M. Tangen and N. J. A. Sloane, Correspondence, 1976-1976
James Turner and William H. Kautz, A survey of progress in graph theory in the Soviet Union SIAM Rev. 12 1970 suppl. iv+68 pp. MR0268074 (42 #2973). See p. 18.
S. Uijlen and B. Westerbaan, A Kochen-Specker system has at least 22 vectors, arXiv preprint arXiv:1412.8544 [cs.DM], 2014.
Mark Velednitsky, New Algorithms for Three Combinatorial Optimization Problems on Graphs, Ph. D. Dissertation, University of California, Berkeley (2020).
Eric Weisstein's World of Mathematics, Simple Graph
Eric Weisstein's World of Mathematics, Connected Graph
Eric Weisstein's World of Mathematics, Degree Sequence
E. M. Wright, The number of graphs on many unlabelled nodes, Mathematische Annalen, December 1969, Volume 183, Issue 4, 250-253
E. M. Wright, The number of unlabelled graphs with many nodes and edges Bull. Amer. Math. Soc. Volume 78, Number 6 (1972), 1032-1034.
FORMULA
a(n) = 2^binomial(n, 2)/n!*(1+(n^2-n)/2^(n-1)+8*n!/(n-4)!*(3*n-7)*(3*n-9)/2^(2*n)+O(n^5/2^(5*n/2))) (see Harary, Palmer reference). - Vladeta Jovovic and Benoit Cloitre, Feb 01 2003
a(n) = 2^binomial(n, 2)/n!*[1+2*n$2*2^{-n}+8/3*n$3*(3n-7)*2^{-2n}+64/3*n$4*(4n^2-34n+75)*2^{-3n}+O(n^8*2^{-4*n})] where n$k is the falling factorial: n$k = n(n-1)(n-2)...(n-k+1). - _Keith Briggs_, Oct 24 2005
From David Pasino (davepasino(AT)yahoo.com), Jan 31 2009: (Start)
a(n) = a(n, 2), where a(n, t) is the number of t-uniform hypergraphs on n unlabeled nodes (cf. A000665 for t = 3 and A051240 for t = 4).
a(n, t) = Sum_{c : 1*c_1+2*c_2+...+n*c_n=n} per(c)*2^f(c), where:
..per(c) = 1/(Product_{i=1..n} c_i!*i^c_i);
..f(c) = (1/ord(c)) * Sum_{r=1..ord(c)} Sum_{x : 1*x_1+2*x_2+...+t*x_t=t} Product_{k=1..t} binomial(y(r, k; c), x_k);
..ord(c) = lcm{i : c_i>0};
..y(r, k; c) = Sum_{s|r : gcd(k, r/s)=1} s*c_(k*s) is the number of k-cycles of the r-th power of a permutation of type c. (End)
a(n) ~ 2^binomial(n,2)/n! [see Flajolet and Sedgewick p. 106, Gross and Yellen, p. 519, etc.]. - N. J. A. Sloane, Nov 11 2013
For asymptotics see also Lupanov 1959, 1960, also Turner and Kautz, p. 18. - N. J. A. Sloane, Apr 08 2014
a(n) = G(1) where G(z) = (1/n!) Sum_g det(I-g z^2)/det(I-g z) and g runs through the natural matrix n X n representation of the pair group A^2_n (for A^2_n see F. Harary and E. M. Palmer, Graphical Enumeration, page 83). - Leonid Bedratyuk, May 02 2015
From _Keith Briggs_, Jun 24 2016: (Start)
a(n) = 2^binomial(n,2)/n!*(
1+
2^( -n + 1)*n$2+
2^(-2*n + 3)*n$3*(n-7/3)+
2^(-3*n + 6)*n$4*(4*n^2/3 - 34*n/3 + 25) +
2^(-4*n + 10)*n$5*(8*n^3/3 - 142*n^2/3 + 2528*n/9 - 24914/45) +
2^(-5*n + 15)*n$6*(128*n^4/15 - 2296*n^3/9 + 25604*n^2/9 - 630554*n/45 + 25704) +
2^(-6*n + 21)*n$7*(2048*n^5/45 - 18416*n^4/9 + 329288*n^3/9 - 131680816*n^2/405 + 193822388*n/135 - 7143499196/2835) + ...),
where n$k is the falling factorial: n$k = n(n-1)(n-2)...(n-k+1), using the method of Wright 1969.
(End)
a(n) = 1/n*Sum_{k=1..n} a(n-k)*A003083(k). - Andrey Zabolotskiy, Aug 11 2020
MAPLE
# To produce all graphs on 4 nodes, for example:
with(GraphTheory):
L:=[NonIsomorphicGraphs](4, output=graphs, outputform=adjacency): # N. J. A. Sloane, Oct 07 2013
seq(GraphTheory[NonIsomorphicGraphs](n, output=count), n=1..10); # Juergen Will, Jan 02 2018
# alternative Maple program:
b:= proc(n, i, l) `if`(n=0 or i=1, 1/n!*2^((p-> add(ceil((p[j]-1)/2)
+add(igcd(p[k], p[j]), k=1..j-1), j=1..nops(p)))([l[], 1$n])),
add(b(n-i*j, i-1, [l[], i$j])/j!/i^j, j=0..n/i))
end:
a:= n-> b(n$2, []):
seq(a(n), n=0..20); # Alois P. Heinz, Aug 14 2019
MATHEMATICA
Needs["Combinatorica`"]
Table[NumberOfGraphs[n], {n, 0, 19}] (* Geoffrey Critzer, Mar 12 2011 *)
permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
edges[v_] := Sum[GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total[Quotient[v, 2]];
a[n_] := Module[{s = 0}, Do[s += permcount[p]*2^edges[p], {p, IntegerPartitions[n]}]; s/n!];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jul 05 2018, after Andrew Howroyd *)
b[n_, i_, l_] := If[n==0 || i==1, 1/n!*2^(Function[p, Sum[Ceiling[(p[[j]]-1 )/2]+Sum[GCD[p[[k]], p[[j]]], {k, 1, j-1}], {j, 1, Length[p]}]][Join[l, Table[1, {n}]]]), Sum[b[n-i*j, i-1, Join[l, Table[i, {j}]]]/j!/i^j, {j, 0, n/i}]];
a[n_] := b[n, n, {}];
a /@ Range[0, 20] (* Jean-François Alcover, Dec 03 2019, after Alois P. Heinz *)
PROG
(Sage)
def a(n):
return len(list(graphs(n)))
# Ralf Stephan, May 30 2014
(PARI)
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i], v[j]))) + sum(i=1, #v, v[i]\2)}
a(n) = {my(s=0); forpart(p=n, s+=permcount(p)*2^edges(p)); s/n!} \\ Andrew Howroyd, Oct 22 2017
(Python)
from itertools import combinations
from math import prod, factorial, gcd
from fractions import Fraction
from sympy.utilities.iterables import partitions
def A000088(n): return int(sum(Fraction(1<<sum(p[r]*p[s]*gcd(r, s) for r, s in combinations(p.keys(), 2))+sum((q>>1)*r+(q*r*(r-1)>>1) for q, r in p.items()), prod(q**r*factorial(r) for q, r in p.items())) for p in partitions(n))) # Chai Wah Wu, Jul 02 2024
CROSSREFS
Partial sums of A002494.
Cf. A000666 (graphs with loops), A001349 (connected graphs), A002218, A006290, A003083.
Column k=1 of A063841.
Column k=2 of A309858.
Row sums of A008406.
Cf. also A000055, A000664.
Partial sums are A006897.
KEYWORD
core,nonn,nice,changed
AUTHOR
EXTENSIONS
Harary gives an incorrect value for a(8); compare A007149
STATUS
approved
A002450 a(n) = (4^n - 1)/3.
(Formerly M3914 N1608)
+10
292
0, 1, 5, 21, 85, 341, 1365, 5461, 21845, 87381, 349525, 1398101, 5592405, 22369621, 89478485, 357913941, 1431655765, 5726623061, 22906492245, 91625968981, 366503875925, 1466015503701, 5864062014805, 23456248059221, 93824992236885, 375299968947541 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
For n > 0, a(n) is the degree (n-1) "numbral" power of 5 (see A048888 for the definition of numbral arithmetic). Example: a(3) = 21, since the numbral square of 5 is 5(*)5 = 101(*)101(base 2) = 101 OR 10100 = 10101(base 2) = 21, where the OR is taken bitwise. - John W. Layman, Dec 18 2001
a(n) is composite for all n > 2 and has factors x, (3*x + 2*(-1)^n) where x belongs to A001045. In binary the terms greater than 0 are 1, 101, 10101, 1010101, etc. - John McNamara, Jan 16 2002
Number of n X 2 binary arrays with path of adjacent 1's from upper left corner to right column. - R. H. Hardin, Mar 16 2002
The Collatz-function iteration started at a(n), for n >= 1, will end at 1 after 2*n+1 steps. - Labos Elemer, Sep 30 2002 [corrected by Wolfdieter Lang, Aug 16 2021]
Second binomial transform of A001045. - Paul Barry, Mar 28 2003
All members of sequence are also generalized octagonal numbers (A001082). - Matthew Vandermast, Apr 10 2003
Also sum of squares of divisors of 2^(n-1): a(n) = A001157(A000079(n-1)), for n > 0. - Paul Barry, Apr 11 2003
Binomial transform of A000244 (with leading zero). - Paul Barry, Apr 11 2003
Number of walks of length 2n between two vertices at distance 2 in the cycle graph C_6. For n = 2 we have for example 5 walks of length 4 from vertex A to C: ABABC, ABCBC, ABCDC, AFABC and AFEDC. - Herbert Kociemba, May 31 2004
Also number of walks of length 2n + 1 between two vertices at distance 3 in the cycle graph C_12. - Herbert Kociemba, Jul 05 2004
a(n+1) is the number of steps that are made when generating all n-step random walks that begin in a given point P on a two-dimensional square lattice. To make one step means to mark one vertex on the lattice (compare A080674). - Pawel P. Mazur (Pawel.Mazur(AT)pwr.wroc.pl), Mar 13 2005
a(n+1) is the sum of square divisors of 4^n. - Paul Barry, Oct 13 2005
a(n+1) is the decimal number generated by the binary bits in the n-th generation of the Rule 250 elementary cellular automaton. - Eric W. Weisstein, Apr 08 2006
a(k) = [M^k]_2,1, where M is the 3 X 3 matrix defined as follows: M = [1, 1, 1; 1, 3, 1; 1, 1, 1]. - Simone Severini, Jun 11 2006
a(n-1) / a(n) = percentage of wasted storage if a single image is stored as a pyramid with a each subsequent higher resolution layer containing four times as many pixels as the previous layer. n is the number of layers. - Victor Brodsky (victorbrodsky(AT)gmail.com), Jun 15 2006
k is in the sequence if and only if C(4k + 1, k) (A052203) is odd. - Paul Barry, Mar 26 2007
This sequence also gives the number of distinct 3-colorings of the odd cycle C(2*n - 1). - _Keith Briggs_, Jun 19 2007
All numbers of the form m*4^m + (4^m-1)/3 have the property that they are sums of two squares and also their indices are the sum of two squares. This follows from the identity m*4^m + (4^m-1)/3 = 4(4(..4(4m + 1) + 1) + 1) + 1 ..) + 1. - Artur Jasinski, Nov 12 2007
For n > 0, terms are the numbers that, in base 4, are repunits: 1_4, 11_4, 111_4, 1111_4, etc. - Artur Jasinski, Sep 30 2008
Let A be the Hessenberg matrix of order n, defined by: A[1, j] = 1, A[i, i] := 5, (i > 1), A[i, i - 1] = -1, and A[i, j] = 0 otherwise. Then, for n >= 1, a(n) = charpoly(A,1). - Milan Janjic, Jan 27 2010
This is the sequence A(0, 1; 3, 4; 2) = A(0, 1; 4, 0; 1) of the family of sequences [a, b : c, d : k] considered by G. Detlefs, and treated as A(a, b; c, d; k) in the W. Lang link given below. - Wolfdieter Lang, Oct 18 2010
6*a(n) + 1 is every second Mersenne number greater than or equal to M3, hence all Mersenne primes greater than M2 must be a 6*a(n) + 1 of this sequence. - Roderick MacPhee, Nov 01 2010
Smallest number having alternating bit sum n. Cf. A065359.
For n = 1, 2, ..., the last digit of a(n) is 1, 5, 1, 5, ... . - Washington Bomfim, Jan 21 2011
Rule 50 elementary cellular automaton generates this sequence. This sequence also appears in the second column of array in A173588. - Paul Muljadi, Jan 27 2011
Sequence found by reading the line from 0, in the direction 0, 5, ... and the line from 1, in the direction 1, 21, ..., in the square spiral whose edges are the Jacobsthal numbers A001045 and whose vertices are the numbers A000975. These parallel lines are two semi-diagonals in the spiral. - Omar E. Pol, Sep 10 2011
a(n), n >= 1, is also the inverse of 3, denoted by 3^(-1), Modd(2^(2*n - 1)). For Modd n see a comment on A203571. E.g., a(2) = 5, 3 * 5 = 15 == 1 (Modd 8), because floor(15/8) = 1 is odd and -15 == 1 (mod 8). For n = 1 note that 3 * 1 = 3 == 1 (Modd 2) because floor(3/2) = 1 and -3 == 1 (mod 2). The inverse of 3 taken Modd 2^(2*n) coincides with 3^(-1) (mod 2^(2*n)) given in A007583(n), n >= 1. - Wolfdieter Lang, Mar 12 2012
If an AVL tree has a leaf at depth n, then the tree can contain no more than a(n+1) nodes total. - Mike Rosulek, Nov 20 2012
Also, this is the Lucas sequence V(5, 4). - Bruno Berselli, Jan 10 2013
Also, for n > 0, a(n) is an odd number whose Collatz trajectory contains no odd number other than n and 1. - Jayanta Basu, Mar 24 2013
Sum_{n >= 1} 1/a(n) converges to (3*(log(4/3) - QPolyGamma[0, 1, 1/4]))/log(4) = 1.263293058100271... = A321873. - K. G. Stier, Jun 23 2014
Consider n spheres in R^n: the i-th one (i=1, ..., n) has radius r(i) = 2^(1-i) and the coordinates of its center are (0, 0, ..., 0, r(i), 0, ..., 0) where r(i) is in position i. The coordinates of the intersection point in the positive orthant of these spheres are (2/a(n), 4/a(n), 8/a(n), 16/a(n), ...). For example in R^2, circles centered at (1, 0) and (0, 1/2), and with radii 1 and 1/2, meet at (2/5, 4/5). - Jean M. Morales, May 19 2015
From Peter Bala, Oct 11 2015: (Start)
a(n) gives the values of m such that binomial(4*m + 1,m) is odd. Cf. A003714, A048716, A263132.
2*a(n) = A020988(n) gives the values of m such that binomial(4*m + 2, m) is odd.
4*a(n) = A080674(n) gives the values of m such that binomial(4*m + 4, m) is odd. (End)
Collatz Conjecture Corollary: Except for powers of 2, the Collatz iteration of any positive integer must eventually reach a(n) and hence terminate at 1. - Gregory L. Simay, May 09 2016
Number of active (ON, black) cells at stage 2^n - 1 of the two-dimensional cellular automaton defined by "Rule 598", based on the 5-celled von Neumann neighborhood. - Robert Price, May 16 2016
From Luca Mariot and Enrico Formenti, Sep 26 2016: (Start)
a(n) is also the number of coprime pairs of polynomials (f, g) over GF(2) where both f and g have degree n + 1 and nonzero constant term.
a(n) is also the number of pairs of one-dimensional binary cellular automata with linear and bipermutive local rule of neighborhood size n+1 giving rise to orthogonal Latin squares of order 2^m, where m is a multiple of n. (End)
Except for 0, 1 and 5, all terms are Brazilian repunits numbers in base 4, and so belong to A125134. For n >= 3, all these terms are composite because a(n) = {(2^n-1) * (2^n + 1)}/3 and either (2^n - 1) or (2^n + 1) is a multiple of 3. - Bernard Schott, Apr 29 2017
Given the 3 X 3 matrix A = [2, 1, 1; 1, 2, 1; 1, 1, 2] and the 3 X 3 unit matrix I_3, A^n = a(n)(A - I_3) + I_3. - Nicolas Patrois, Jul 05 2017
The binary expansion of a(n) (n >= 1) consists of n 1's alternating with n - 1 0's. Example: a(4) = 85 = 1010101_2. - Emeric Deutsch, Aug 30 2017
a(n) (n >= 1) is the viabin number of the integer partition [n, n - 1, n - 2, ..., 2, 1] (for the definition of viabin number see comment in A290253). Example: a(4) = 85 = 1010101_2; consequently, the southeast border of the Ferrers board of the corresponding integer partition is ENENENEN, where E = (1, 0), N = (0, 1); this leads to the integer partition [4, 3, 2, 1]. - Emeric Deutsch, Aug 30 2017
Numbers whose binary and Gray-code representations are both palindromes (i.e., intersection of A006995 and A281379). - Amiram Eldar, May 17 2021
Starting with n = 1 the sequence satisfies {a(n) mod 6} = repeat{1, 5, 3}. - Wolfdieter Lang, Jan 14 2022
Terms >= 5 are those q for which the multiplicative order of 2 mod q is floor(log_2(q)) + 2 (and which is 1 more than the smallest possible order for any q). - Tim Seuré, Mar 09 2024
The order of 2 modulo a(n) is 2*n for n >= 2. - Joerg Arndt, Mar 09 2024
REFERENCES
A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 112.
J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Sung-Hyuk Cha, On Complete and Size Balanced k-ary Tree Integer Sequences, International Journal of Applied Mathematics and Informatics, Issue 2, Volume 6, 2012, pp. 67-75. - From N. J. A. Sloane, Dec 24 2012
Robert Coquereaux and Jean-Bernard Zuber, Counting partitions by genus. II. A compendium of results, arXiv:2305.01100 [math.CO], 2023. See p. 8.
D. Dumont, Interprétations combinatoires des nombres de Genocchi, Duke Math. J., 41 (1974), 305-318. (Annotated scanned copy)
David Eppstein, Making Change in 2048, arXiv:1804.07396 [cs.DM], 2018.
C. Ernst and D. W. Sumners, The Growth of the Number of Prime Knots, Math. Proc. Cambridge Philos. Soc. 102, 303-315, 1987
Ernesto Estrada and José A. de la Peña, Integer sequences from walks in graphs, Notes on Number Theory and Discrete Mathematics, Vol. 19, 2013, No. 3, 78-84.
Rigoberto Flórez, Robinson A. Higuita, and Antara Mukherjee, Alternating Sums in the Hosoya Polynomial Triangle, Article 14.9.5 Journal of Integer Sequences, Vol. 17 (2014).
Enrico Formenti and Luca Mariot, Exhaustive Generation of Linear Orthogonal CA, Automata 2023, Univ. Twente (Netherlands), see p. 22 of 38.
A. Frosini and S. Rinaldi, On the Sequence A079500 and Its Combinatorial Interpretations, J. Integer Seq., Vol. 9 (2006), Article 06.3.1.
Andreas M. Hinz and Paul K. Stockmeyer, Precious Metal Sequences and Sierpinski-Type Graphs, J. Integer Seq., Vol 25 (2022), Article 22.4.8.
Petro Kosobutskyy, Anastasiia Yedyharova, and Taras Slobodzyan, From Newton's binomial and Pascal's triangle to Collatz's problem, Comp. Des. Sys., Theor. Practice (2023) Vol. 5, No. 1, 121-127.
J. V. Leyendekkers and A.G. Shannon, Modular Rings and the Integer 3, Notes on Number Theory & Discrete Mathematics, 17 (2011), 47-51.
Luca Mariot, Orthogonal labelings in de Bruijn graphs, IWOCA 2020 - Open Problems Session, Delft University of Technology (Netherlands).
Luca Mariot, Connections between Latin squares, Cellular Automata and Coprime Polynomials, Univ. Twente (Netherlands, 2023). See p. 16/37.
Luca Mariot, Enrico Formenti and Alberto Leporati, Constructing Orthogonal Latin Squares from Linear Cellular Automata. In: Exploratory papers of AUTOMATA 2016.
Luca Mariot, Maximilien Gadouleau, Enrico Formenti, and Alberto Leporati, Mutually Orthogonal Latin Squares based on Cellular Automata, arXiv:1906.08249 [cs.DM], 2019.
Mircea Merca, A Note on Cosine Power Sums J. Integer Sequences, Vol. 15 (2012), Article 12.5.3.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
Kalika Prasad, Munesh Kumari, Rabiranjan Mohanta, and Hrishikesh Mahato, The sequence of higher order Mersenne numbers and associated binomial transforms, arXiv:2307.08073 [math.NT], 2023.
A. G. Shannon, Some recurrence relations for binary sequence matrices, NNTDM 17 (2011), 4, 913. - From N. J. A. Sloane, Jun 13 2012
T. N. Thiele, Interpolationsrechnung, Teubner, Leipzig, 1909, p. 35.
Eric Weisstein's World of Mathematics, Repunit, Rule 250, Prime Knot.
Michael Williams, Collatz conjecture: an order isomorphic recursive machine, ResearchGate (2024). See pp. 8, 13.
FORMULA
From Wolfdieter Lang, Apr 24 2001: (Start)
a(n+1) = Sum_{m = 0..n} A060921(n, m).
G.f.: x/((1-x)*(1-4*x)). (End)
a(n) = Sum_{k = 0..n-1} 4^k; a(n) = A001045(2*n). - Paul Barry, Mar 17 2003
E.g.f.: (exp(4*x) - exp(x))/3. - Paul Barry, Mar 28 2003
a(n) = (A007583(n) - 1)/2. - N. J. A. Sloane, May 16 2003
a(n) = A000975(2*n)/2. - N. J. A. Sloane, Sep 13 2003
a(n) = A084160(n)/2. - N. J. A. Sloane, Sep 13 2003
a(n+1) = 4*a(n) + 1, with a(0) = 0. - Philippe Deléham, Feb 25 2004
a(n) = Sum_{i = 0..n-1} C(2*n - 1 - i, i)*2^i. - Mario Catalani (mario.catalani(AT)unito.it), Jul 23 2004
a(n+1) = Sum_{k = 0..n} binomial(n+1, k+1)*3^k. - Paul Barry, Aug 20 2004
a(n) = center term in M^n * [1 0 0], where M is the 3 X 3 matrix [1 1 1 / 1 3 1 / 1 1 1]. M^n * [1 0 0] = [A007583(n-1) a(n) A007583(n-1)]. E.g., a(4) = 85 since M^4 * [1 0 0] = [43 85 43] = [A007583(3) a(4) A007583(3)]. - Gary W. Adamson, Dec 18 2004
a(n) = Sum_{k = 0..n, j = 0..n} C(n, j)*C(j, k)*A001045(j - k). - Paul Barry, Feb 15 2005
a(n) = Sum_{k = 0..n} C(n, k)*A001045(n-k)*2^k = Sum_{k = 0..n} C(n, k)*A001045(k)*2^(n-k). - Paul Barry, Apr 22 2005
a(n) = A125118(n, 3) for n > 2. - Reinhard Zumkeller, Nov 21 2006
a(n) = Sum_{k = 0..n} 2^(n - k)*A128908(n, k), n >= 1. - Philippe Deléham, Oct 19 2008
a(n) = Sum_{k = 0..n} A106566(n, k)*A100335(k). - Philippe Deléham, Oct 30 2008
If we define f(m, j, x) = Sum_{k = j..m} binomial(m, k)*stirling2(k, j)*x^(m - k) then a(n-1) = f(2*n, 4, -2), n >= 2. - Milan Janjic, Apr 26 2009
a(n) = A014551(n) * A001045(n). - R. J. Mathar, Jul 08 2009
a(n) = 4*a(n-1) + a(n-2) - 4*a(n-3) = 5*a(n-1) - 4*a(n-2), a(0) = 0, a(1) = 1, a(2) = 5. - Wolfdieter Lang, Oct 18 2010
a(0) = 0, a(n+1) = a(n) + 2^(2*n). - Washington Bomfim, Jan 21 2011
A036555(a(n)) = 2*n. - Reinhard Zumkeller, Jan 28 2011
a(n) = Sum_{k = 1..floor((n+2)/3)} C(2*n + 1, n + 2 - 3*k). - Mircea Merca, Jun 25 2011
a(n) = Sum_{i = 1..n} binomial(2*n + 1, 2*i)/3. - Wesley Ivan Hurt, Mar 14 2015
a(n+1) = 2^(2*n) + a(n), a(0) = 0. - Ben Paul Thurston, Dec 27 2015
a(k*n)/a(n) = 1 + 4^n + ... + 4^((k-1)*n). - Gregory L. Simay, Jun 09 2016
Dirichlet g.f.: (PolyLog(s, 4) - zeta(s))/3. - Ilya Gutkovskiy, Jun 26 2016
A000120(a(n)) = n. - André Dalwigk, Mar 26 2018
a(m) divides a(m*n), in particular: a(2*n) == 0 (mod 5), a(3*n) == 0 (mod 3*7), a(5*n) == 0 (mod 11*31), etc. - M. F. Hasler, Oct 19 2018
a(n) = 4^(n-1) + a(n-1). - Bob Selcoe, Jan 01 2020
a(n) = A178415(1, n) = A347834(1, n-1), arrays, for n >= 1. - Wolfdieter Lang, Nov 29 2021
a(n) = A000225(2*n)/3. - John Keith, Jan 22 2022
a(n) = A080674(n) + 1 = A047849(n) - 1 = A163834(n) - 2 = A155701(n) - 3 = A163868(n) - 4 = A156605(n) - 7. - Ray Chandler, Jun 16 2023
EXAMPLE
Apply Collatz iteration to 9: 9, 28, 14, 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5 and hence 16, 8, 4, 2, 1.
Apply Collatz iteration to 27: 27, 82, 41, 124, 62, 31, 94, 47, 142, 71, 214, 107, 322, 161, 484, 242, 121, 364, 182, 91, 274, 137, 412, 206, 103, 310, 155, 466, 233, 700, 350, 175, 526, 263, 790, 395, 1186, 593, 1780, 890, 445, 1336, 668, 334, 167, 502, 251, 754, 377, 1132, 566, 283, 850, 425, 1276, 638, 319, 958, 479, 1438, 719, 2158, 1079, 3238, 1619, 4858, 2429, 7288, 3644, 1822, 911, 2734, 1367, 4102, 2051, 6154, 3077, 9232, 4616, 2308, 1154, 577, 1732, 866, 433, 1300, 650, 325, 976, 488, 244, 122, 61, 184, 92, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5 and hence 16, 8, 4, 2, 1. [Corrected by Sean A. Irvine at the suggestion of Stephen Cornelius, Mar 04 2024]
a(5) = (4^5 - 1)/3 = 341 = 11111_4 = {(2^5 - 1) * (2^5 + 1)}/3 = 31 * 33/3 = 31 * 11. - Bernard Schott, Apr 29 2017
MAPLE
[seq((4^n-1)/3, n=0..40)];
A002450:=1/(4*z-1)/(z-1); # Simon Plouffe in his 1992 dissertation, dropping the initial zero
MATHEMATICA
Table[(4^n - 1)/3, {n, 0, 127}] (* Vladimir Joseph Stephan Orlovsky, Sep 29 2008 *)
LinearRecurrence[{5, -4}, {0, 1}, 30] (* Harvey P. Dale, Jun 23 2013 *)
PROG
(Magma) [ (4^n-1)/3: n in [0..25] ]; // Klaus Brockhaus, Oct 28 2008
(Magma) [n le 2 select n-1 else 5*Self(n-1)-4*Self(n-2): n in [1..70]]; // Vincenzo Librandi, Jun 13 2015
(PARI) a(n) = (4^n-1)/3;
(PARI) my(z='z+O('z^40)); Vec(z/((1-z)*(1-4*z))) \\ Altug Alkan, Oct 11 2015
(Haskell)
a002450 = (`div` 3) . a024036
a002450_list = iterate ((+ 1) . (* 4)) 0
-- Reinhard Zumkeller, Oct 03 2012
(Maxima) makelist((4^n-1)/3, n, 0, 30); /* Martin Ettl, Nov 05 2012 */
(GAP) List([0..25], n -> (4^n-1)/3); # Muniru A Asiru, Feb 18 2018
(Scala) ((List.fill(20)(4: BigInt)).scanLeft(1: BigInt)(_ * _)).scanLeft(0: BigInt)(_ + _) // Alonso del Arte, Sep 17 2019
(Python)
def A002450(n): return ((1<<(n<<1))-1)//3 # Chai Wah Wu, Jan 29 2023
CROSSREFS
Partial sums of powers of 4, A000302.
When converted to binary, this gives A094028.
Subsequence of A003714.
Primitive factors: A129735.
KEYWORD
nonn,easy,nice
AUTHOR
STATUS
approved
A038548 Number of divisors of n that are at most sqrt(n). +10
212
1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 3, 1, 3, 1, 3, 2, 2, 1, 4, 2, 2, 2, 3, 1, 4, 1, 3, 2, 2, 2, 5, 1, 2, 2, 4, 1, 4, 1, 3, 3, 2, 1, 5, 2, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, 6, 1, 2, 3, 4, 2, 4, 1, 3, 2, 4, 1, 6, 1, 2, 3, 3, 2, 4, 1, 5, 3, 2, 1, 6, 2, 2, 2, 4, 1, 6, 2, 3, 2, 2, 2, 6, 1, 3, 3, 5, 1, 4, 1, 4, 4 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,4
COMMENTS
Number of ways to arrange n identical objects in a rectangle, modulo rotation.
Number of unordered solutions of x*y = n. - Colin Mallows, Jan 26 2002
Number of ways to write n-1 as n-1 = x*y + x + y, 0 <= x <= y <= n. - Benoit Cloitre, Jun 23 2002
Also number of values for x where x+2n and x-2n are both squares (e.g., if n=9, then 18+18 and 18-18 are both squares, as are 82+18 and 82-18 so a(9)=2); this is because a(n) is the number of solutions to n=k(k+r) in which case if x=r^2+2n then x+2n=(r+2k)^2 and x-2n=r^2 (cf. A061408). - Henry Bottomley, May 03 2001
Also number of sums of sequences of consecutive odd numbers or consecutive even numbers including sequences of length 1 (e.g., 12 = 5+7 or 2+4+6 or 12 so a(12)=3). - Naohiro Nomoto, Feb 26 2002
Number of partitions whose consecutive parts differ by exactly two.
a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24=2^3*3 and 375=3*5^3 both have prime signature (3,1). - Christian G. Bower, Jun 06 2005
Also number of partitions of n such that if k is the largest part, then each of the parts 1,2,...,k-1 occurs exactly twice. Example: a(12)=3 because we have [3,3,2,2,1,1],[2,2,2,2,2,1,1] and [1,1,1,1,1,1,1,1,1,1,1,1]. - Emeric Deutsch, Mar 07 2006
a(n) is also the number of nonnegative integer solutions of the Diophantine equation 4*x^2 - y^2 = 16*n. For example, a(24)=4 because there are 4 solutions: (x,y) = (10,4), (11,10), (14,20), (25,46). - N-E. Fahssi, Feb 27 2008
a(n) is the number of even divisors of 2*n that are <= sqrt(2*n). - Joerg Arndt, Mar 04 2010
First differences of A094820. - John W. Layman, Feb 21 2012
a(n) = #{k: A027750(n,k) <= A000196(n)}; a(A008578(n)) = 1; a(A002808(n)) > 1. - Reinhard Zumkeller, Dec 26 2012
Row lengths of the tables in A161906 and A161908. - Reinhard Zumkeller, Mar 08 2013
Number of positive integers in the sequence defined by x_0 = n, x_(k+1) = (k+1)*(x_k-2)/(k+2) or equivalently by x_k = n/(k+1) - k. - Luc Rousseau, Mar 03 2018
Expanding the first comment: Number of rectangles with area n and integer side lengths, modulo rotation. Also number of 2D grids of n congruent squares, in a rectangle, modulo rotation (cf. A000005 for rectangles instead of squares; cf. A034836 for the 3D case). - Manfred Boergens, Jun 08 2021
Number of divisors of n that have an even number of prime divisors (counted with multiplicity), or in other words, number of terms of A028260 that divide n. - Antti Karttunen, Apr 17 2022
REFERENCES
George E. Andrews and Kimmo Eriksson, Integer Partitions, Cambridge Univ. Press, 2004, page 18, exer. 21, 22.
LINKS
Cristina Ballantine and Mircea Merca, New convolutions for the number of divisors, Journal of Number Theory, 2016, vol. 170, pp. 17-34.
Christopher Briggs, Y. Hirano, and H. Tsutsui, Positive Solutions to Some Systems of Diophantine Equations, Journal of Integer Sequences, Vol. 19 (2016), Article 16.8.4.
S.-H. Cha, E. G. DuCasse, and L. V. Quintas, Graph invariants based on the divides relation and ordered by prime signatures, arXiv:1405.5283 [math.NT], 2014, (2.27).
Madeline Locus Dawsey, Matthew Just and Robert Schneider, A "supernormal" partition statistic, arXiv:2107.14284 [math.NT], 2021. See Table 2 p. 21.
T. Verhoeff, Rectangular and Trapezoidal Arrangements, J. Integer Sequences, Vol. 2 (1999), Article 99.1.6.
FORMULA
a(n) = ceiling(d(n)/2), where d(n) = number of divisors of n (A000005).
a(2k) = A034178(2k) + A001227(k). a(2k+1) = A034178(2k+1). - Naohiro Nomoto, Feb 26 2002
G.f.: Sum_{k>=1} x^(k^2)/(1-x^k). - Jon Perry, Sep 10 2004
Dirichlet g.f.: (zeta(s)^2 + zeta(2*s))/2. - Christian G. Bower, Jun 06 2005 [corrected by Vaclav Kotesovec, Aug 19 2019]
a(n) = (A000005(n) + A010052(n))/2. - Omar E. Pol, Jun 23 2009
a(n) = A034178(4*n). - Michael Somos, May 11 2011
2*a(n) = A161841(n). - R. J. Mathar, Mar 07 2021
a(n) = A000005(n) - A056924(n) = A056924(n) + A010052(n) = Sum_{d|n} A065043(d). - Antti Karttunen, Apr 17 2022
Sum_{k=1..n} a(k) ~ n*log(n)/2 + (gamma - 1/2)*n, where gamma is Euler's constant (A001620). - Amiram Eldar, Nov 27 2022
EXAMPLE
a(4) = 2 since 4 = 2 * 2 = 4 * 1. Also A034178(4*4) = 2 since 16 = 4^2 - 0^2 = 5^2 - 3^2. - Michael Somos, May 11 2011
x + x^2 + x^3 + 2*x^4 + x^5 + 2*x^6 + x^7 + 2*x^8 + 2*x^9 + 2*x^10 + x^11 + ...
MAPLE
with(numtheory): A038548 := n->ceil(sigma[0](n)/2);
MATHEMATICA
Table[ Floor[ (DivisorSigma[0, n] + 1)/2], {n, 105}] (* Robert G. Wilson v, Mar 02 2009 *)
Table[Count[Divisors[n], _?(#<=Sqrt[n]&)], {n, 110}] (* Harvey P. Dale, Jul 10 2021 *)
PROG
(PARI) {a(n) = if( n<1, 0, sumdiv(n, d, d*d <= n))} /* Michael Somos, Jan 25 2005 */
(PARI) a(n)=ceil(numdiv(n)/2) \\ Charles R Greathouse IV, Sep 28 2012
(Haskell)
a038548 n = length $ takeWhile (<= a000196 n) $ a027750_row n
-- Reinhard Zumkeller, Dec 26 2012
(C#)
int A038548(int n) {
System.Numerics.BigInteger erg = 0, i;
for (i = 1; i * i <= n; i++)
if (n % i == 0) erg++;
return (int)erg;
} // Frank Hollstein, Jan 08 2023
(Python)
from sympy import divisor_count
def A038548(n): return divisor_count(n)+1>>1 # Chai Wah Wu, Dec 19 2023
CROSSREFS
Different from A068108. Records give A038549, A004778, A086921.
Cf. A066839, A033676, row sums of A303300.
Inverse Möbius transform of A065043.
Cf. A244664 (Dgf at s=2), A244665 (Dgf at s=3).
KEYWORD
nonn,easy,nice
AUTHOR
STATUS
approved
A001349 Number of connected graphs with n nodes.
(Formerly M1657 N0649)
+10
166
1, 1, 1, 2, 6, 21, 112, 853, 11117, 261080, 11716571, 1006700565, 164059830476, 50335907869219, 29003487462848061, 31397381142761241960, 63969560113225176176277, 245871831682084026519528568, 1787331725248899088890200576580, 24636021429399867655322650759681644 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,4
COMMENTS
The singleton graph K_1 is considered connected even though it is conventionally taken to have vertex connectivity 0. - Eric W. Weisstein, Jul 21 2020
Inverse Euler transform of A000088 but with a(0) omitted so that Sum_{k>=0} A000088(n) * x^n = Product_{k>0} (1 - x^k)^-a(k). It is debatable if there is a connected graph with 0 nodes and so a(0)=0 or better start from a(1)=1. - Michael Somos, Jun 01 2013. [As Harary once remarked in a famous paper ("Is the null-graph a pointless concept?"), the empty graph has every property, which is why a(0)=1. - N. J. A. Sloane, Apr 08 2014]
REFERENCES
P. Butler and R. W. Robinson, On the computer calculation of the number of nonseparable graphs, pp. 191 - 208 of Proc. Second Caribbean Conference Combinatorics and Computing (Bridgetown, 1977). Ed. R. C. Read and C. C. Cadogan. University of the West Indies, Cave Hill Campus, Barbados, 1977. vii+223 pp.
F. Harary and R. C. Read, Is the null-graph a pointless concept?, pp. 37-44 of Graphs and Combinatorics (Washington, Jun 1973), Ed. by R. A. Bari and F. Harary. Lect. Notes Math., Vol. 406. Springer-Verlag, 1974.
F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, page 48, c(x). Also page 242.
Lupanov, O. B. Asymptotic estimates of the number of graphs with n edges. (Russian) Dokl. Akad. Nauk SSSR 126 1959 498--500. MR0109796 (22 #681).
Lupanov, O. B. "On asymptotic estimates of the number of graphs and networks with n edges." Problems of Cybernetics [in Russian], Moscow 4 (1960): 5-21.
R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1978.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Robin J. Wilson, Introduction to Graph Theory, Academic Press, 1972. (But see A126060!)
LINKS
N. J. A. Sloane, Table of n, a(n) for n = 0..75 [Computed using Keith Briggs's values for A000088]
Michal Adamaszek, Small flag complexes with torsion, arXiv:1208.3892 [math.CO], 2012.
C. O. Aguilar and B. Gharesifard, Graph Controllability Classes for the Laplacian Leader-Follower Dynamics, 2014. See Table 1.
Jonathan Baker, Kevin N. Vander Meulen, and Adam Van Tuyl, Shedding vertices of vertex decomposable well-covered graphs, Discrete Mathematics (2018) Vol. 341, Issue 12, 3355-3369. Also arXiv:1606.04447 [math.NT], 2016.
Johannes Bausch and Felix Leditzky, Error Thresholds for Arbitrary Pauli Noise, arXiv:1910.00471 [quant-ph], 2019.
Gunnar Brinkmann, Kris Coolsaet, Jan Goedgebeur and Hadrien Melot, House of Graphs: a database of interesting graphs, arXiv:1204.3549 [math.CO], 2012.
P. Butler and R. W. Robinson, On the computer calculation of the number of nonseparable graphs, pp. 191 - 208 of Proc. Second Caribbean Conference Combinatorics and Computing (Bridgetown, 1977). Ed. R. C. Read and C. C. Cadogan. University of the West Indies, Cave Hill Campus, Barbados, 1977. vii+223 pp. [Annotated scanned copy]
P. J. Cameron, Some sequences of integers, Discrete Math., 75 (1989), 89-102.
P. J. Cameron, Some sequences of integers, in "Graph Theory and Combinatorics 1988", ed. B. Bollobas, Annals of Discrete Math., 43 (1989), 89-102.
P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
CombOS - Combinatorial Object Server, Generate graphs
Matt DeVos, Adam Dyck, Jonathan Jedwab, and Samuel Simon, Which graphs occur as gamma-graphs?, arXiv:1810.01583 [math.CO], 2018.
J. P. Dolch, Names of Hamiltonian graphs, Proc. 4th S-E Conf. Combin., Graph Theory, Computing, Congress. Numer. 8 (1973), 259-271. (Annotated scanned copy of 3 pages)
Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018.
F. Harary, The number of linear, directed, rooted, and connected graphs, Trans. Am. Math. Soc. 78 (1955) 445-463.
Avraham Itzhakov and Michael Codish, Incremental Symmetry Breaking Constraints for Graph Search Problems, Ben-Gurion University of the Negev (Beer-Sheva, Israel, 2019).
Markus Kirchweger and Stefan Szeider, SAT Modulo Symmetries for Graph Generation and Enumeration, ACM Trans. Comput. Logic (2024). See p. 27.
X. Li, D. S. Stones, H. Wang, H. Deng, X. Liu and G. Wang, NetMODE: Network Motif Detection without Nauty, PLoS ONE 7(12): e50093. - From N. J. A. Sloane, Feb 02 2013
Steffen Lauritzen, Alessandro Rinaldo, and Kayvan Sadeghi, On Exchangeability in Network Models, arXiv:1709.03885 [math.ST], 2017.
Richard J. Mathar, Counting Connected Graphs without Overlapping Cycles, arXiv:1808.06264 [math.CO], 2018.
B. D. McKay, Simple Graphs
A. Milicevic and N. Trinajstic, Combinatorial Enumeration in Chemistry, Chem. Modell., Vol. 4, (2006), pp. 405-469.
Marius Möller, Laura Hindersin, and Arne Traulsen, Exploring and mapping the universe of evolutionary graphs, arXiv:1810.12807 [q-bio.PE], 2018.
Marius Möller, Laura Hindersin, and Arne Traulsen, Exploring and mapping the universe of evolutionary graphs identifies structural properties affecting fixation probability and time, Communications Biology 2 (2019), Article number: 137.
L. Naughton and G. Pfeiffer, Integer Sequences Realized by the Subgroup Pattern of the Symmetric Group, J. Int. Seq. 16 (2013) #13.5.8
M. Petkovsek and T. Pisanski, Counting disconnected structures: chemical trees, fullerenes, I-graphs and others, Croatica Chem. Acta, 78 (2005), 563-567.
R. W. Robinson, Enumeration of non-separable graphs, J. Combin. Theory 9 (1970), 327-356.
Gordon Royle, Small graphs
Yoav Spector and Moshe Schwartz, Study of potential Hamiltonians for quantum graphity, arXiv:1808.05632 [cond-mat.stat-mech], 2018.
M. L. Stein and P. R. Stein, Enumeration of Linear Graphs and Connected Linear Graphs up to p = 18 Points. Report LA-3775, Los Alamos Scientific Laboratory of the University of California, Los Alamos, NM, Oct 1967.
Peter Steinbach, Field Guide to Simple Graphs, Volume 1, Part 17 (For Volumes 1, 2, 3, 4 of this book see A000088, A008406, A000055, A000664, respectively.)
D. Stolee, Isomorph-free generation of 2-connected graphs with applications, arXiv:1104.5261 [math.CO], 2011.
Rodrigo Stange Tessinari, Marcia Helena Moreira Paiva, Maxwell E. Monteiro, Marcelo E. V. Segatto, Anilton Garcia, George T. Kanellos, Reza Nejabati, and Dimitra Simeonidou, On the Impact of the Physical Topology on the Optical Network Performance, IEEE British and Irish Conference on Optics and Photonics (BICOP 2018), London.
James Turner and William H. Kautz, A survey of progress in graph theory in the Soviet Union SIAM Rev. 12 1970 suppl. iv+68 pp. MR0268074 (42 #2973). See p. 18. - N. J. A. Sloane, Apr 08 2014
Eric Weisstein's World of Mathematics, Connected Graph.
Eric Weisstein's World of Mathematics, k-Connected Graph
Myung-Gon Yoon, Peter Rowlinson, Dragos Cvetkovic, and Zoran Stanic, Controllability of multi-agent dynamical systems with a broadcasting control signal, Asian J. Control 16 (4) (2014) 1066-1072, Table 1.
FORMULA
For asymptotics see Lupanov 1959, 1960, also Turner and Kautz, p. 18. - N. J. A. Sloane, Apr 08 2014
EXAMPLE
G.f. = 1 + x + x^2 + 2*x^3 + 6*x^4 + 21*x^5 + 112*x^6 + 853*x^7 + ....
MAPLE
# To produce all connected graphs on 4 nodes, for example (from N. J. A. Sloane, Oct 07 2013):
with(GraphTheory):
L:=[NonIsomorphicGraphs](4, output=graphs, outputform=adjacency, restrictto=connected):
MATHEMATICA
<<"Combinatorica`"; max = 19; A000088 = Table[ NumberOfGraphs[n], {n, 0, max}]; f[x_] = 1 - Product[ 1/(1 - x^k)^a[k], {k, 1, max}]; a[0] = a[1] = a[2] = 1; coes = CoefficientList[ Series[ f[x], {x, 0, max}], x]; sol = First[ Solve[ Thread[ Rest[ coes + A000088 ] == 0]]]; Table[ a[n], {n, 0, max}] /. sol (* Jean-François Alcover, Nov 24 2011 *)
terms = 20;
mob[m_, n_] := If[Mod[m, n] == 0, MoebiusMu[m/n], 0];
EULERi[b_] := Module[{a, c, i, d}, c = {}; For[i = 1, i <= Length[b], i++, c = Append[c, i*b[[i]] - Sum[c[[d]]*b[[i - d]], {d, 1, i - 1}]]]; a = {}; For[i = 1, i <= Length[b], i++, a = Append[a, (1/i)*Sum[mob[i, d]*c[[d]], {d, 1, i}]]]; Return[a]];
permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
edges[v_] := Sum[GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total[Quotient[v, 2]];
a88[n_] := Module[{s = 0}, Do[s += permcount[p]*2^edges[p], {p, IntegerPartitions[n]}]; s/n!];
Join[{1}, EULERi[Array[a88, terms]]] (* Jean-François Alcover, Jul 28 2018, after Andrew Howroyd *)
PROG
(Sage)
property=lambda G: G.is_connected()
def a(n):
return len([1 for G in graphs(n) if property(G)])
# Ralf Stephan, May 30 2014
(Python)
# uses Python code for A000088
from sympy import mobius, divisors
def A001349(n):
if n == 0: return 1
def c(n): return n*A000088(n)-sum(c(k)*A000088(n-k) for k in range(1, n))
return sum(mobius(n//d)*c(d) for d in divisors(n, generator=True))//n # Chai Wah Wu, Jul 02 2024
CROSSREFS
Cf. A000088, A002218, A006290, A000719, A201922 (Multiset transform).
Row sums of A054924.
KEYWORD
nonn,core,nice,changed
AUTHOR
EXTENSIONS
More terms from Ronald C. Read
STATUS
approved
A061775 Number of nodes in rooted tree with Matula-Goebel number n. +10
143
1, 2, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 5, 5, 6, 5, 6, 6, 6, 6, 6, 7, 6, 7, 6, 6, 7, 6, 6, 7, 6, 7, 7, 6, 6, 7, 7, 6, 7, 6, 7, 8, 7, 7, 7, 7, 8, 7, 7, 6, 8, 8, 7, 7, 7, 6, 8, 7, 7, 8, 7, 8, 8, 6, 7, 8, 8, 7, 8, 7, 7, 9, 7, 8, 8, 7, 8, 9, 7, 7, 8, 8, 7, 8, 8, 7, 9, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 7, 8, 8, 8, 9, 7, 7, 9 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Let p(1)=2, ... denote the primes. The label f(T) for a rooted tree T is 1 if T has 1 node, otherwise f(T) = Product p(f(T_i)) where the T_i are the subtrees obtained by deleting the root and the edges adjacent to it. (Cf. A061773 for illustration).
Each n occurs A000081(n) times.
LINKS
Emeric Deutsch, Tree statistics from Matula numbers, arXiv preprint arXiv:1111.4288 [math.CO], 2011.
F. Goebel, On a 1-1-correspondence between rooted trees and natural numbers, J. Combin. Theory, B 29 (1980), 141-143.
I. Gutman and A. Ivic, On Matula numbers, Discrete Math., 150, 1996, 131-142.
I. Gutman and Yeong-Nan Yeh, Deducing properties of trees from their Matula numbers, Publ. Inst. Math., 53 (67), 1993, 17-22.
FORMULA
a(1) = 1; if n = p_t (= the t-th prime), then a(n) = 1+a(t); if n = uv (u,v>=2), then a(n) = a(u)+a(v)-1.
a(n) = A091238(A091204(n)). - Antti Karttunen, January 2004
a(n) = A196050(n)+1. - Antti Karttunen, Aug 16 2014
EXAMPLE
a(4) = 3 because the rooted tree corresponding to the Matula-Goebel number 4 is "V", which has one root-node and two leaf-nodes, three in total.
See also the illustrations in A061773.
MAPLE
with(numtheory): a := proc (n) local u, v: u := n-> op(1, factorset(n)): v := n-> n/u(n): if n = 1 then 1 elif isprime(n) then 1+a(pi(n)) else a(u(n))+a(v(n))-1 end if end proc: seq(a(n), n = 1..108); # Emeric Deutsch, Sep 19 2011
MATHEMATICA
a[n_] := Module[{u, v}, u = FactorInteger[#][[1, 1]]&; v = #/u[#]&; If[n == 1, 1, If[PrimeQ[n], 1+a[PrimePi[n]], a[u[n]]+a[v[n]]-1]]]; Table[a[n], {n, 108}] (* Jean-François Alcover, Jan 16 2014, after Emeric Deutsch *)
PROG
(Haskell)
import Data.List (genericIndex)
a061775 n = genericIndex a061775_list (n - 1)
a061775_list = 1 : g 2 where
g x = y : g (x + 1) where
y = if t > 0 then a061775 t + 1 else a061775 u + a061775 v - 1
where t = a049084 x; u = a020639 x; v = x `div` u
-- Reinhard Zumkeller, Sep 03 2013
(PARI)
A061775(n) = if(1==n, 1, if(isprime(n), 1+A061775(primepi(n)), {my(pfs, t, i); pfs=factor(n); pfs[, 1]=apply(t->A061775(t), pfs[, 1]); (1-bigomega(n)) + sum(i=1, omega(n), pfs[i, 1]*pfs[i, 2])}));
for(n=1, 10000, write("b061775.txt", n, " ", A061775(n)));
\\ Antti Karttunen, Aug 16 2014
(Python)
from functools import lru_cache
from sympy import isprime, factorint, primepi
@lru_cache(maxsize=None)
def A061775(n):
if n == 1: return 1
if isprime(n): return 1+A061775(primepi(n))
return 1+sum(e*(A061775(p)-1) for p, e in factorint(n).items()) # Chai Wah Wu, Mar 19 2022
CROSSREFS
One more than A196050.
Sum of entries in row n of irregular table A214573.
Number of entries in row n of irregular tables A182907, A206491, A206495 and A212620.
One less than the number of entries in row n of irregular tables A184187, A193401 and A193403.
Cf. A005517 (the position of the first occurrence of n).
Cf. A005518 (the position of the last occurrence of n).
Cf. A091233 (their difference plus one).
Cf. A214572 (Numbers k such that a(k) = 8).
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jun 22 2001
EXTENSIONS
More terms from David W. Wilson, Jun 25 2001
Extended by Emeric Deutsch, Sep 19 2011
STATUS
approved
A004394 Superabundant [or super-abundant] numbers: n such that sigma(n)/n > sigma(m)/m for all m < n, sigma(n) being A000203(n), the sum of the divisors of n. +10
93
1, 2, 4, 6, 12, 24, 36, 48, 60, 120, 180, 240, 360, 720, 840, 1260, 1680, 2520, 5040, 10080, 15120, 25200, 27720, 55440, 110880, 166320, 277200, 332640, 554400, 665280, 720720, 1441440, 2162160, 3603600, 4324320, 7207200, 8648640, 10810800, 21621600 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Matthew Conroy points out that these are different from the highly composite numbers - see A002182. Jul 10 1996
With respect to the comment above, neither sequence is subsequence of the other. - Ivan N. Ianakiev, Feb 11 2020
Also n such that sigma_{-1}(n) > sigma_{-1}(m) for all m < n, where sigma_{-1}(n) is the sum of the reciprocals of the divisors of n. - Matthew Vandermast, Jun 09 2004
Ramanujan (1997, Section 59; written in 1915) called these numbers "generalized highly composite." Alaoglu and Erdős (1944) changed the terminology to "superabundant." - Jonathan Sondow, Jul 11 2011
Alaoglu and Erdős show that: (1) n is superabundant => n=2^{e_2} * 3^{e_3} * ...* p^{e_p}, with e_2 >= e_3 >= ... >= e_p (and e_p is 1 unless n=4 or n=36); (2) if q < r are primes, then | e_r - floor(e_q*log(q)/log(r)) | <= 1; (3) q^{e_q} < 2^{e_2+2} for primes q, 2 < q <= p. - _Keith Briggs_, Apr 26 2005
It follows from Alaoglu and Erdős finding 1 (above) that, for n > 7, a(n) is a Zumkeller Number (A083207); for details, see Proposition 9 and Corollary 5 at Rao/Peng link (below). - Ivan N. Ianakiev, Feb 11 2020
See A166735 for superabundant numbers that are not highly composite, and A189228 for superabundant numbers that are not colossally abundant.
Pillai called these numbers "highly abundant numbers of the 1st order". - Amiram Eldar, Jun 30 2019
REFERENCES
R. Honsberger, Mathematical Gems, M.A.A., 1973, p. 112.
J. Sandor, "Abundant numbers", In: M. Hazewinkel, Encyclopedia of Mathematics, Supplement III, Kluwer Acad. Publ., 2002 (see pp. 19-21).
D. Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, 128.
LINKS
D. Kilminster, Table of n, a(n) for n = 1..2000 (extends to n = 8436 in the comments; first 500 terms from T. D. Noe)
A. Akbary and Z. Friggstad, Superabundant numbers and the Riemann hypothesis, Amer. Math. Monthly, 116 (2009), 273-275.
L. Alaoglu and P. Erdős, On highly composite and similar numbers, Trans. Amer. Math. Soc., 56 (1944), 448-469. Errata.
Christian Axler, Inequalities involving the primorial counting function, arXiv:2406.04018 [math.NT], 2024. See p. 12.
Yu. Bilu, P. Habegger, and L. Kühne, Effective bounds for singular units, arXiv:1805.07167 [math.NT], 2018.
Benjamin Braun and Brian Davis, Antichain Simplices, arXiv:1901.01417 [math.CO], 2019.
Keith Briggs, Abundant numbers and the Riemann Hypothesis, Experimental Math., Vol. 16 (2006), p. 251-256.
Tibor Burdette and Ian Stewart, Counterexamples to a Conjecture by Alaoglu and Erdős, arXiv:2009.03306 [math.NT], 2020.
Geoffrey Caveney, Jean-Louis Nicolas and Jonathan Sondow, Robin's theorem, primes, and a new elementary reformulation of the Riemann Hypothesis, INTEGERS 11 (2011), #A33.
G. Caveney, J.-L. Nicolas and J. Sondow, On SA, CA, and GA numbers, arXiv preprint arXiv:1112.6010 [math.NT], 2011. - From N. J. A. Sloane, Apr 14 2012
G. Caveney, J.-L. Nicolas and J. Sondow, On SA, CA, and GA numbers, Ramanujan J., 29 (2012), 359-384.
P. Erdős and J.-L. Nicolas, Répartition des nombres superabondants (Text in French), Bulletin de la S. M. F., tome 103 (1975), pp. 65-90.
F. Jokar, On k-layered numbers and some labeling related to k-layered numbers, arXiv:2003.11309 [math.NT], 2020.
Stepan Kochemazov, Oleg Zaikin, Eduard Vatutin, and Alexey Belyshev, Enumerating Diagonal Latin Squares of Order Up to 9, J. Int. Seq., Vol. 23 (2020), Article 20.1.2.
J. C. Lagarias, An elementary problem equivalent to the Riemann hypothesis, Am. Math. Monthly 109 (#6, 2002), 534-543.
A. Morkotun, On the increase of Gronwall function value at the multiplication of its argument by a prime, arXiv preprint arXiv:1307.0083 [math.NT], 2013.
S. Nazardonyavi and S. Yakubovich, Superabundant numbers, their subsequences and the Riemann hypothesis, arXiv preprint arXiv:1211.2147 [math.NT], 2012.
S. Nazardonyavi and S. Yakubovich, Delicacy of the Riemann hypothesis and certain subsequences of superabundant numbers, arXiv preprint arXiv:1306.3434 [math.NT], 2013.
S. Nazardonyavi and S. Yakubovich, Extremely Abundant Numbers and the Riemann Hypothesis, Journal of Integer Sequences, 17 (2014), Article 14.2.8.
S. Sivasankaranarayana Pillai, Highly abundant numbers, Bulletin of the Calcutta Mathematical Society, Vol. 35, No. 1 (1943), pp. 141-156.
S. Sivasankaranarayana Pillai, On numbers analogous to highly composite numbers of Ramanujan, Rajah Sir Annamalai Chettiar Commemoration Volume, ed. Dr. B. V. Narayanaswamy Naidu, Annamalai University, 1941, pp. 697-704.
S. Ramanujan, Highly composite numbers, Annotated and with a foreword by J.-L. Nicolas and G. Robin, Ramanujan J., 1 (1997), 119-153.
K. P. S. Bhaskara Rao and Yuejian Peng, On Zumkeller Numbers, Journal of Number Theory, Volume 133, Issue 4, April 2013, pp. 1135-1155.
T. Schwabhäuser, Preventing Exceptions to Robin's Inequality, arXiv preprint arXiv:1308.3678 [math.NT], 2013.
Eric Weisstein's World of Mathematics, Superabundant Number.
FORMULA
a(n+1) <= 2*a(n). - A.H.M. Smeets, Jul 10 2021
MATHEMATICA
a=0; Do[b=DivisorSigma[1, n]/n; If[b>a, a=b; Print[n]], {n, 1, 10^7}]
(* Second program: convert all 8436 terms in b-file into a list of terms: *)
f[w_] := Times @@ Flatten@ {Complement[#1, Union[#2, #3]], Product[Prime@ i, {i, PrimePi@ #}] & /@ #2, Factorial /@ #3} & @@ ToExpression@ {StringSplit[w, _?(! DigitQ@ # &)], StringCases[w, (x : DigitCharacter ..) ~~ "#" :> x], StringCases[w, (x : DigitCharacter ..) ~~ "!" :> x]}; Map[Which[StringTake[#, 1] == {"#"}, f@ Last@ StringSplit@ Last@ #, StringTake[#, 1] == {}, Nothing, True, ToExpression@ StringSplit[#][[1, -1]]] &, Drop[Import["b004394.txt", "Data"], 3] ] (* Michael De Vlieger, May 08 2018 *)
PROG
(PARI) print1(r=1); forstep(n=2, 1e6, 2, t=sigma(n, -1); if(t>r, r=t; print1(", "n))) \\ Charles R Greathouse IV, Jul 19 2011
CROSSREFS
Almost the same as A077006.
The colossally abundant numbers A004490 are a subsequence, as are A023199.
Subsequence of A025487; apart from a(3) = 4 and a(7) = 36, a subsequence of A102750.
Cf. A112974 (number of superabundant numbers between colossally abundant numbers).
Cf. A091901 (Robin's inequality), A189686 (superabundant and the reverse of Robin's inequality), A192884 (non-superabundant and the reverse of Robin's inequality).
KEYWORD
nonn,nice
AUTHOR
EXTENSIONS
Name edited by Peter Munn, Mar 13 2019
STATUS
approved
A109129 Width (i.e., number of non-root vertices having degree 1) of the rooted tree with Matula-Goebel number n. +10
75
0, 1, 1, 2, 1, 2, 2, 3, 2, 2, 1, 3, 2, 3, 2, 4, 2, 3, 3, 3, 3, 2, 2, 4, 2, 3, 3, 4, 2, 3, 1, 5, 2, 3, 3, 4, 3, 4, 3, 4, 2, 4, 3, 3, 3, 3, 2, 5, 4, 3, 3, 4, 4, 4, 2, 5, 4, 3, 2, 4, 3, 2, 4, 6, 3, 3, 3, 4, 3, 4, 3, 5, 3, 4, 3, 5, 3, 4, 2, 5, 4, 3, 2, 5, 3, 4, 3, 4, 4, 4, 4, 4, 2, 3, 4, 6, 2, 5, 3, 4 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,4
COMMENTS
The Matula-Goebel number of a rooted tree is defined in the following recursive manner: to the one-vertex tree there corresponds the number 1; to a tree T with root degree 1 there corresponds the t-th prime number, where t is the Matula-Goebel number of the tree obtained from T by deleting the edge emanating from the root; to a tree T with root degree m >= 2 there corresponds the product of the Matula-Goebel numbers of the m branches of T.
A non-root vertex having degree 1 is called a leaf.
Every positive integer has a unique factorization (see A324924) into factors q(i) = prime(i)/i for i > 0. The number of ones in this factorization is a(n). For example, 30 = q(1)^3 q(2)^2 q(3), so a(30) = 3. - Gus Wiseman, Mar 23 2019
LINKS
E. Deutsch, Tree statistics from Matula numbers, arXiv preprint arXiv:1111.4288 [math.CO], 2011.
F. Goebel, On a 1-1-correspondence between rooted trees and natural numbers, J. Combin. Theory, B 29 (1980), 141-143.
I. Gutman and A. Ivic, On Matula numbers, Discrete Math., 150, 1996, 131-142.
I. Gutman and Yeong-Nan Yeh, Deducing properties of trees from their Matula numbers, Publ. Inst. Math., 53 (67), 1993, 17-22.
FORMULA
a(1)=0; a(2)=1; if n = p(t) (= the t-th prime) and t >= 2, then a(n) = a(t); if n = rs (r, s >= 2), then a(n) = a(r) + a(s). The Maple program is based on this recursive formula.
The Gutman et al. references contain a different recursive formula.
EXAMPLE
a(7)=2 because the rooted tree with Matula-Goebel number 7 is the rooted tree Y.
a(2^m) = m because the rooted tree with Matula-Goebel number 2^m is a star with m edges.
MAPLE
with(numtheory): a := proc (n) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: if n = 1 then 0 elif n = 2 then 1 elif bigomega(n) = 1 then a(pi(n)) else a(r(n))+a(s(n)) end if end proc: seq(a(n), n = 1 .. 110);
MATHEMATICA
Nest[Function[{a, n}, Append[a, If[PrimeQ@ n, a[[PrimePi@ n]], Total@ Map[#2 a[[#1]] & @@ # &, FactorInteger[n]] ]]] @@ {#, Length@ # + 1} &, {0, 1}, 105] (* Michael De Vlieger, Mar 24 2019 *)
PROG
(Haskell)
import Data.List (genericIndex)
a109129 n = genericIndex a109129_list (n - 1)
a109129_list = 0 : 1 : g 3 where
g x = y : g (x + 1) where
y = if t > 0 then a109129 t else a109129 r + a109129 s
where t = a049084 x; r = a020639 x; s = x `div` r
-- Reinhard Zumkeller, Sep 03 2013
(PARI) ML(n) = if( n==1, 1, my(f=factor(n)); sum(k=1, matsize(f)[1], ML(primepi(f[k, 1]))*f[k, 2])) ;
A109129(n) = if( n==1, 0, ML(n) ); \\ François Marques, Mar 16 2021
(Python)
from functools import lru_cache
from sympy import primepi, isprime, factorint
@lru_cache(maxsize=None)
def A109129(n):
if n <= 2: return n-1
if isprime(n): return A109129(primepi(n))
return sum(e*A109129(p) for p, e in factorint(n).items()) # Chai Wah Wu, Mar 19 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
_Keith Briggs_, Aug 17 2005
EXTENSIONS
Typo in formula fixed by Reinhard Zumkeller, Sep 03 2013
STATUS
approved
page 1 2 3 4 5 6 7 8 9 10 ... 14

Search completed in 0.166 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 2 21:16 EDT 2024. Contains 373960 sequences. (Running on oeis4.)