login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A066839 a(n) = sum of positive divisors k of n where k <= sqrt(n). 13
1, 1, 1, 3, 1, 3, 1, 3, 4, 3, 1, 6, 1, 3, 4, 7, 1, 6, 1, 7, 4, 3, 1, 10, 6, 3, 4, 7, 1, 11, 1, 7, 4, 3, 6, 16, 1, 3, 4, 12, 1, 12, 1, 7, 9, 3, 1, 16, 8, 8, 4, 7, 1, 12, 6, 14, 4, 3, 1, 21, 1, 3, 11, 15, 6, 12, 1, 7, 4, 15, 1, 24, 1, 3, 9, 7, 8, 12, 1, 20, 13, 3, 1, 23, 6, 3, 4, 15, 1, 26, 8, 7, 4, 3 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

Row sums of the table in A161906. - Reinhard Zumkeller, Mar 08 2013

LINKS

Harry J. Smith, Table of n, a(n) for n = 1..1000

FORMULA

G.f.: Sum_{k>0} k x^(k^2)/(1-x^k). - Michael Somos, Nov 19 2005

EXAMPLE

a(9) = 4 = 1 + 3 because 1 and 3 are the positive divisors of 9 that are <= sqrt(9).

a(20) = 7: the divisors of 20 are 1, 2, 4, 5, 10 and 20. a(20) = 1 + 2 + 4 = 7.

MAPLE

with(numtheory):for n from 1 to 200 do c[n] := 0:d := divisors(n):for i from 1 to nops(d) do if d[i]<=n^.5+10^(-10) then c[n] := c[n]+d[i]:fi:od:od:seq(c[i], i=1..200);

MATHEMATICA

f[n_] := Plus @@ Select[ Divisors@n, # <= Sqrt@n &]; Array[f, 94] (* Robert G. Wilson v, Mar 04 2010 *)

PROG

(PARI) a(n)=sumdiv(n, d, (d^2<=n)*d) /* Michael Somos, Nov 19 2005 */

(PARI) { for (n=1, 1000, d=divisors(n); s=sum(k=1, ceil(length(d)/2), d[k]); write("b066839.txt", n, " ", s) ) } \\ Harry J. Smith, Mar 31 2010

(Haskell)

a066839 = sum . a161906_row  -- Reinhard Zumkeller, Mar 08 2013

(Sage) [sum(k for k in divisors(n) if k^2<=n) for n in (1..94)] # Giuseppe Coppoletta, Jan 21 2015

CROSSREFS

Cf. A070038, A038548, A072499.

Sequence in context: A240833 A110919 A109599 * A176246 A046933 A185091

Adjacent sequences:  A066836 A066837 A066838 * A066840 A066841 A066842

KEYWORD

nonn

AUTHOR

Leroy Quet, Jan 20 2002

EXTENSIONS

More terms from Larry Reeves (larryr(AT)acm.org), Apr 12 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 3 04:39 EST 2016. Contains 278698 sequences.