S
Regular Graphs (v < 10)

There is a trivial but important observation about natural numbers known as The
Frivolous Theorem of Arithmetic. It states: Most natural numbers are very very very large.
The same kind of observation cannot be avoided for simple graphs, especially when one
is faced with trying to fathom the depths of large regular graphs, some of which are
shown here.

Regular graphs, as already defined, have uniform vertex degrees, and compared to
non-regulars there are surprisingly few of them. Because of their high orders of symmetry
they are the gems of graph theory, and for the same reason they are the most difficult to
capture in a drawing. Oddly enough it is this gem-like symmetry, this nearly total lack of
distinguishing marks, which makes regular graphs difficult to study, difficult to generate,
even difficult to count.

A regular graph s identified partly by its common degree. For example in a 3-regular
graph the degree of every vertex is 3. If is well known that every 3-regular graph has a
2-regular subgraph — namely a cycle or a bouquet of disconnected cycles — and it was
recently proved that every 4-regular graph has a 3-regular subgraph. Though it seems this
is the beginning of a trend. it is not true that every 5-regular graph has a 4-regular
subgraph. Similarly, the idea fails for all larger degrees of regularity.

Theorem 11 Forr<4, every r-regular simple graph contains an (-1)-regular subgraph.

As in Chapter 2 the graphs are arranged in complementary pairs. Specifications are
given in three lines describing fopological and graph-theoretic names. outstanding
characteristics, and symmetry group name and/or order. See Chapter 2 for explanations
of symbols. And there are two new properties: Tand S. For each pair of vertices in a
transitive graph (1), there is an automorphism that maps one to the other. For each pair
of edges in an edge-transitive graph, there is an automorphism that maps one to the
other. A symmetric graph (S) is both transitive and edge-transitive. Note that the
complement of a symmetric graph is not necessarily symmetric.
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v=3
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